21 research outputs found

    Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression

    Get PDF
    Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions

    Network Theory Analysis of Antibody-Antigen Reactivity Data: The Immune Trees at Birth and Adulthood

    Get PDF
    Motivation: New antigen microarray technology enables parallel recording of antibody reactivities with hundreds of antigens. Such data affords system level analysis of the immune system’s organization using methods and approaches from network theory. Here we measured the reactivity of 290 antigens (for both the IgG and IgM isotypes) of 10 healthy mothers and their term newborns. We constructed antigen correlation networks (or immune networks) whose nodes are the antigens and the edges are the antigen-antigen reactivity correlations, and we also computed their corresponding minimum spanning trees (MST) – maximal information reduced sub-graphs. We quantify the network organization (topology) in terms of the network theory divergence rate measure and rank the antigen importance in the full antigen correlation networks by the eigen-value centrality measure. This analysis makes possible the characterization and comparison of the IgG and IgM immune networks at birth (newborns) and adulthood (mothers) in terms of topology and node importance. Results: Comparison of the immune network topology at birth and adulthood revealed partial conservation of the IgG immune network topology, and significant reorganization of the IgM immune networks. Inspection of the antigen importance revealed some dominant (in terms of high centrality) antigens in the IgG and IgM networks at birth, which retain their importance at adulthood

    Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways

    No full text
    The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis

    Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier

    No full text
    The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin–proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis
    corecore