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Abstract

Traditionally, immunology has considered a meaningful antibody response to be marked by large amounts of high-affinity
antibodies reactive with the specific inciting antigen; the detection of small amounts of low-affinity antibodies binding to
seemingly unrelated antigens has been considered to be beneath the threshold of immunological meaning. A systems-
biology approach to immunology, however, suggests that large-scale patterns in the antibody repertoire might also reflect
the functional state of the immune system. To investigate such global patterns of antibodies, we have used an antigen-
microarray device combined with informatic analysis. Here we asked whether antibody-repertoire patterns might reflect the
state of an implanted tumor. We studied the serum antibodies of inbred C57BL/6 mice before and after implantation of
syngeneic 3LL tumor cells of either metastatic or non-metastatic clones. We analyzed patterns of IgG and IgM
autoantibodies binding to over 300 self-antigens arrayed on slides using support vector machines and genetic algorithm
techniques. We now report that antibody patterns, but not single antibodies, were informative: 1) mice, even before tumor
implantation, manifest both individual and common patterns of low-titer natural autoantibodies; 2) the patterns of these
autoantibodies respond to the growth of the tumor cells, and can distinguish between metastatic and non-metastatic
tumor clones; and 3) curative tumor resection induces dynamic changes in these low-titer autoantibody patterns. The
informative patterns included autoantibodies binding to self-molecules not known to be tumor-associated antigens
(including insulin, DNA, myosin, fibrinogen) as well as to known tumor-associated antigens (including p53, cytokeratin,
carbonic anhydrases, tyrosinase). Thus, low-titer autoantibodies that are not the direct products of tumor-specific
immunization can still generate an immune biomarker of the body-tumor interaction. System-wide profiling of
autoantibody repertoires can be informative.
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Introduction

Immunologists traditionally have focused their studies on strong

immune reactivates to defined antigens induced by immunization or

by disease. However, in contrast to the discrete immune specificity

borne by individual T-cell or antibody-mediated immune reactions,

recent attention has been directed to global patterns formed by

collectives of low-titer antibody reactivities as indicative of immune-

system state in both health and disease [1,2,3,4,5,6]. These systems-

immunology studiesofpatterns ofantibodiesaredirected toanalyzing

the general immune state of the body [7,8]; their aim is not focused

exclusively on high-titer, demonstrably specific one-to-one antigen-

antibody binding reactions. Systems immunology repertoire pattern

studies have included Western blot analyses of autoantibodies to

undefined self-antigens in tissue extracts [2,9] and antibodies

measured in microtiter ELISA plates to some tens of named antigens

[10,11]. We have extended the study of global antibody patterns by

exploiting microarray technology to devise antigen chips capable of

measuring the patterns of antibody reactivity, low-level as well as

high-level, to many hundreds of defined antigens simultaneously

[1,3,12]. bioinformatics analysis of natural autoantibody reactivities

makes it possible to characterize common patterns of reactivity, for

example, in mice patterns predictive of a future autoimmune disease

[1]. In humans, we have reported the presence of common patterns of

IgM and IgA autoantibodies in the cord bloods of healthy newborn

humans, apparently arising from self-reactive immune activation in

utero [3]. Antigen microarrays have also been used to detect

autoantibodies to antigens known to be associated with particular
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autoimmune diseases [4,6,13,14]. Recently, attention has been

directed to cancer biomarker discovery using proteomic and

immunomic techniques [15,16].

The present study was done to learn whether inbred mice raised

under standard specific pathogen-free (SPF) conditions manifest

individual and common patterns of autoantibody reactivity and

whether common autoantibody patterns are responsive to the state

of an implanted syngeneic tumor. We refer to these reactivities as

autoantibody reactivities because the antibodies were detected by

their binding to self-molecules spotted on a microarray chip.

Moreover, in keeping with convention, we named particular

autoantibody reactivities by the names of the self-antigens they

bound on the chip. Given their low affinities, one cannot

determine whether the IgG autoantibodies were induced in a

response to any of the tested self-antigens. Nevertheless, the

conserved reactivity patterns document the effect of the tumor on

the global autoantibody repertoire.

We studied the serum IgG and IgM repertoires in C57BL/6

mice before and after implantation in the footpads with tumor cells

of either of two clones of the syngeneic Lewis lung carcinoma

(3LL), metastatic and non-metastatic [17,18]. The tumor cells

were either left to grow locally or the tumors were resected.

Resection of the metastatic D122 clone spurs the development of

lethal lung metastases; resection of the non-metastatic A9F1 clone

cures the mice. This paper reports that both individual and

common autoantibody reactivity patterns exist in inbred mice and

that common autoantibody patterns create signatures that

dynamically reflect the state of an implanted tumor. Autoantibody

reactivity patterns can thus serve as immune biomarkers [7] and

provide a general insight into the natural autoantibody repertoire

– the immunological homunculus [19]. A systems biology

approach to immune system patterns can complement the

traditional quest for discrete specificity.

Results

Experimental protocol
Male mice of the C57BL/6 inbred strain, 8-weeks old, were

bled and 8 days later were inoculated with 26105 3LL tumor cells;

the mice received either clone D122 or clone A9F. The metastatic

D122 clone lacks cell-surface expression of the H-2Kb MHC class

I molecule; this clone metastasizes to the lungs and kills the mice

following resection of local tumors when they reach a size of about

8 mm in diameter. The less virulent A9F1 clone of the 3LL tumor

expresses the H-2Kb MHC molecule, and resection of the local

tumor usually cures the mice [17,18]. The tumors in some of the

mice receiving each clone were resected when the tumors had

reached a size of about 8 mm in diameter; the remaining mice

were left with their locally growing tumors. Resection was followed

by lethal lung metastases in those mice bearing D122 tumors; the

resection cured the mice bearing A9F1 tumors. The mice with

unresected tumors were bled at day 33 post inoculation when the

local tumors had reached a diameter of about 18 mm. The mice

recovering from the A9F1 clone after its resection were bled on

days 43 and 56 post inoculation. The mice suffering from

metastasis of the D122 clone were bled on day 43 post inoculation

(17 days after resection), before being sacrificed. Figure 1 presents

a schematic representation of the experimental protocol. The

intensities of IgG and IgM antibodies binding to each of 327

antigens were measured individually and compared to the

reactivities detected in the healthy mice before they had received

the tumor-cell inoculation. We asked two general questions: do

inbred mice manifest individual and common autoantibody

reactivities to particular self-molecules and can common autoan-

tibody reactivities reflect the tumor state?

Healthy and tumor-bearing mice express individual and
common IgM and IgG autoantibody repertoires

Antibody reactivities that are common to individuals within a

group are marked by relatively little individual variation in

intensity. In contrast, antibody reactivities that markedly differ

between members of the group are characterized by relatively high

individual variation. The mean group antibody reactivities and the

standard deviations manifested by the serum IgM and IgG

repertoires binding to each antigen served to define common (low

variation) and individual (high variation) reactivities. We removed

from consideration 129 (IgM) and 124 (IgG) antigens to which

Figure 1. Time line of experimental procedures. Samples were collected several times during the development of each tumor (marked red),
and before and after resection (marked green). Black lines indicate the existence of a primary tumor; the orange line signifies a metastatic state (the
D122 clone) following resection and the blue line signifies resected mice with no metastases (the A9F1 clone). The numbers of mice in each group at
each time point can be seen in Table 1.
doi:10.1371/journal.pone.0006053.g001
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there was little or no meaningful reactivity at the 1:5 serum

dilution (see supplementary Table S1) because uniformly low or

absent reactivities would manifest very little individual variation a

priori. We found that the mice expressed both individual and

common autoantibody reactivities both before and after they were

implanted with tumor cells (not shown). The reactivities

manifested by the mice before and after tumor implantation are

shown in Figure 2, depicted as 3D plots of the range of IgM and

IgG reactivities (Z axis) to sets of antigens (Y axis) in different mice

(X axis). The plots are colored to clarify differences. Panels a and b

illustrate the IgM and IgG reactivities in the healthy and tumor-

bearing mice to each antigen in a set of about 100 antigens with

relatively low variation within the group of healthy mice; Panels c

and d illustrate, by comparison, the IgM and IgG reactivities

manifested to a set of about 100 antigens with relatively high

variation. One can clearly see the uniformity among antigen

reactivities in panels a and b compared to the large range of

reactivities in Panels c and d. The antigens in each of these sets of

antibody reactivity are listed in Table 1. We found that the degree

of variation was not determined by the degree of reactivity, and

was similar before and after tumor inoculation. In other words,

antigens with a low or high variability before inoculation also had

a low or high variability, respectively, after inoculation (see

Figure 1, Supplementary Material). Thus we can conclude that

inbred C57BL/6 mice manifest common autoantibody reactivities

to some self-antigens and individual autoantibody reactivities to

other self-antigens. Are particular autoantibody reactivity patterns

associated with the growth of tumor cells?

No single autoantibody marks the tumor state
To detect the effects of tumor growth on the autoantibody

repertoire, we compared the serum taken from the mice before

and after the implantation of the tumor cells. Following the

inoculation of the tumor cells, some of the common autoanti-

body reactivities showed significant increases or decreases in the

group as a whole; most of the common autoantibody

reactivities, however, did not appear to respond to tumor

inoculation (data not shown). Actually, no single autoantibody

reactivity could discriminate between the pre-tumor and early

post-tumor states. In other words, the microarray analysis did

not detect a single tumor-associated reactivity. Moreover, the

degree of change in autoantibody repertoire in response to a

growing tumor was equally associated with both high and low

degrees of initial autoantibody reactivities. The absence of clear

tumor-associated antibodies to a single antigen may have

resulted from two factors: the antigens we spotted did not

include the hypothetical tumor-specific antigen, and/or our

quest was directed to a level of separation that was apparently

above the capacity of any single reactivity. Nevertheless, the

collective patterns of autoantibodies binding to the arrayed self-

antigens were informative.

Separation of healthy and tumor-bearing mice using all
the tested autoantibody reactivities

To test statistically the ability of the full repertoire to separate

tumor-bearing from healthy mice, we used a linear SVM and

tested the separation using a Leave One Out (LOO) test [20]. In

this method, one of the samples is left out during the initial training

of the SVM. The left-out sample is then used as a test to see if the

collective of reactivities measured on the chip could successfully

identify whether the left-out sample was from a healthy mouse or

from a tumor-bearing mouse. Using this method, we obtained an

accurate identification of the test sample in 88% of the IgG

reactivities and in 85% of the IgM reactivities. There was no

significant difference in the success of detection between the

healthy and tumor-bearing samples (see supplementary Table S2).

This level of success is significantly greater than chance

(x2
1~22,pv0:0001). Thus the repertoire of autoantibodies, as

measured by the antigen chip, is highly sensitive to the tumor-

bearing state.

Sets of autoantibody reactivities can mark a tumor
To characterize defined sets of autoantibody reactivities that

might create a tumor signature, we first tested the minimal

number of the antigens in the array that might be able to fully

separate the repertoire shared by tumor-bearing mice from the

repertoire shared by the mice before their inoculation with tumor

cells. The separation between the pre- and post-inoculation sera

was performed using a linear combination of antigen reactivities.

Autoantibodies to a set of antigens was said to fully separate the

two groups if a linear score of their reactivities could be computed

to be consistently positive for the pre-inoculation and negative for

the post-inoculation groups. We began the analysis using

essentially all the antigens and systematically decreased the

number of antigens. We found that a full separation between the

healthy and tumor-bearing repertoires could be obtained with

collectives of about 10–15 antigens for each antibody isotype

separately, using a combination of a feature selection algorithm

and an SVM [21], as described in the Supplementary Methods S1

section. We never found a combination of less than 7 antigen

reactivities that could perfectly separate the repertoires of the pre-

and post-tumor states.

Informative antigen sets
To identify autoantibody reactivity patterns indicative of the

tumor state, we compared the autoantibody patterns of the 23

healthy mice with a limited number of antigens developing in these

mice at two time points (25–30 days and 52 days) after they had

been inoculated with the tumor cells. We sought such sets using

feature selection algorithms (see Supplementary Methods S1

section). In view of the differences observed between IgG and

IgM reactivities (Table 1), we analyzed each antibody isotype

repertoire separately. The sets of antigen reactivities differed, but

many of the same antigens appeared over and over again in the

different lists, and many of the separating antigen reactivities

appeared more than would be predicted at random

(x2
202~4021,pv1:e{100) (Figure 3). Note that an auto-antigen

appearing in the separating set is not necessarily a ‘‘tumor-

associated antigen’’. It simply is an antigen sensitive to the general

perturbation induced by the tumor in the antibody repertoire. For

each antigen reactivity, its frequency of appearance and

cumulative weight across the runs were calculated, and the

reactivities were sorted accordingly. Figure 4 depicts the antigen

reactivities most frequently appearing in the separating sets.

Frequent antigen reactivities were almost always associated with

either a healthy state (positive weight), or a tumor-bearing state

(negative weight).

To test statistically the predictive ability of each antigen-

reactivity set obtained by using the SVM and Genetic Algorithm

approaches, we used the LOO test [20] to see if the list of

biomarker antigens could successfully identify whether the left-out

sample was from a healthy mouse or from a tumor-bearing mouse.

We obtained an accurate identification of the test sample in 93%

of the IgG reactivities and in 88% of the IgM reactivities tested in

the SVM set. There was no significant difference in accuracy

between the healthy and tumor-bearing samples. This level of

success is significantly greater than by chance (x2
1~22,pv0:0001).

Autoantibodies and Tumor State
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The tumor biomarker signature changes during tumor
growth

To learn whether different stages of tumor growth were

associated with changes in autoantibody patterns, we compared

the 22 serum samples obtained from the mice bearing 5 mm

tumors (19–22 days after tumor-cell inoculation) with the 22 serum

samples obtained from these mice when they bore 18 mm

diameter tumors (33days after tumor-cell inoculation). An SVM

algorithm separated the two stages, with LOO success rates of 70–

90%. Hence we can conclude that common autoantibody

repertoires are also sensitive to tumor growth.

Clustering analyses of autoantibody reactivity patterns
associated with tumor state

We used a clustering analysis of the serum samples to gain some

insight into particular autoantibodies that might reflect the state of

the tumor. This clustering analysis was based on antigen

reactivities ranked by a Wilcoxon rank-sum test [22] for their

relative ability to discriminate between the groups being compared

(see supplementary Table S3 (I–III) in the Supplementary Data).

The numbers of samples available for the clustering studies were

too small to obtain statistical validation, nevertheless, the results

call attention to interesting trends and antigens. In the following

clustering figures (Figures 5, 6, 7), IgG reactivities are shown in the

left panels and IgM in the right panels; the columns represent

individual mice; the rows represent the antigens, named on the

right side of each panel; and the relative degrees of reactivity are

indicated by the range of colors, from dark blue (very low) to dark

red (very high).

It appears, for example, that autoantibody profiles can

distinguish between mice bearing the A9F1 and D122 clones of

the syngeneic 3LL tumor. Figure 5 shows the results of clustering

the A9F1 and D122 local tumors at 18 mm. The IgG repertoire

did not separate the two clone types (left panel), but the IgM

repertoire reactivities (right panel) successfully separated them.

Resecting each tumor at 8 mm also generated different effects

on the autoantibody patterns. Figure 6 shows the results of

Figure 2. Antibody intensities of common and individual repertoires. Three-dimensional plots of the range of log-intensities of IgM and IgG
reactivities (Z axis) to sets of antigens (Y axis) in individual samples (X axis) are shown. The colors are only to clarify differences. Panels a and b
illustrate the IgM and IgG reactivities in the healthy and tumor-bearing mice to each antigen in a set of about 100 antigens with relatively low
variation within the group of healthy mice (labeled homuncular antigens); Panels c and d illustrate, by comparison, the IgM and IgG reactivities
manifested to a set of about 100 antigens with relatively high variation (labeled varying antigens). The figure illustrates three observations: A) the log-
intensity has a wide, almost flat distribution showing large differences between different antigens; B) highly varying antigens manifest high variation
over most samples and are not limited to a specific group of mice; C) variation of the log-intensity is not a function of the average intensity.
doi:10.1371/journal.pone.0006053.g002
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Table 1. Mean log reactivities of IgM and IgG serum antibodies binding to different antigens.

IgM antibodies IgG antibodies

Shared Mean Non shared Mean Shared Mean Non shared Mean

Ab reactivities reactivity Ab reactivities reactivity Ab reactivities reactivity Ab reactivities reactivity

phospholipase D 1.10 Galectin-1 1.18 vasopresin 0.92 oligo C 1.50

p53-wt 0.74 GpC 1.08 4IBB(L) 0.89 poly-Lysine 1.40

tyrosinase 0.68 CpG 1.05 acid collagen 0.75 p53-peptide 7 1.21

c-protein 0.66 gliadin 0.96 PTH 0.73 glycerald3phosdehyd 0.98

pertusis toxin 0.63 oligo c 0.92 H28 0.66 poly-Asp 0.75

human MOG 0.59 AMP 0.92 tyrosinase 0.64 GpC 0.71

p53-peptide 9 0.58 e.coli LPS 0.92 Galectin-3 0.63 CpG 0.68

insulin 0.58 ssDNA 0.88 thyrosinase 0.62 p53-peptide 16 0.67

Acetyl cholinesterase 0.54 poly-lysine 0.65 pertusis toxin 0.58 AMP 0.63

oxytocin 0.52 ubiquitin 0.59 c-protein 0.49 catalase 0.58

KLH 0.49 galectin-3 0.58 insulin 0.48 phosphlipase d 0.51

thyrosinase 0.49 p53-peptide 7 0.58 rhMOG 0.46 p53-peptide 11 0.49

MIG 0.45 glycerald 3 phos dehyd 0.57 elastase 0.45 myosin 0.46

b cristallin 0.44 MIF 0.56 oxytocin 0.37 LDL 0.43

MART1 0.42 rat mog 35-55 0.52 GST 0.32 CTLA-4 0.43

HSP47 0.40 dsDNA 0.51 p53- peptide 9 0.32 MIG 0.42

LDL 0.36 C1Q 0.50 HSP60 0.29 brain extract 0.41

MAGE1 0.36 acid phosphatase 0.48 defensin 2 0.27 TCR bchain/pN12 0.41

4IBB(L) 0.33 p53-peptide 16 0.44 MOG peptide 35-55 0.26 C1Q 0.40

fibrin 0.28 hemoglobin a 0.44 lipid A 0.24 HSP60 0.37

poly - Arg 0.27 fibrinogen 0.42 neuropeptide y 0.24 thyroglubulin 0.31

oligo T 0.17 b2 glycoprotein 0.41 c peptide 0.22 MAGE1 0.31

PSA 0.16 p53-peptide 23 0.38 glucagon 0.22 p53-peptide 23 0.31

GAD 0.15 catalase 0.37 poly - Arginine 0.22 gliadin 0.29

OVA 0.14 HSP40 0.36 b cristallin 0.18 fibrinogen 0.29

neuropeptide y 0.12 IL-21 0.33 HSP47 0.14 TCR bchain/pC2C 0.29

p53-3 0.10 p53-peptide 11 0.31 INAPC 0.14 p53-peptide11-186 0.28

poly-Asp 0.09 CTLA4 0.31 b-amyeloid 0.12 TCR bchain/C1 0.26

actin 0.08 Oligo ATTA 0.31 MOBP/p78-89 0.10 PSA 0.25

salmonela antigen 140 0.08 gelsolin 0.21 MUPP 0.09 salmonela-LPS 0.25

IL-8 0.07 p53-peptide 12-168 0.21 SOD 0.06 fibronectin 0.22

HSP60-peptide 17 0.06 myosin 0.18 MMP2 0.04 TNF-alpha 0.20

heparin 0.05 cytokeratin 18 0.18 kinesin 0.04 annexin 37 0.19

elastase 0.05 oligo A 0.18 caspase 8 0.03 Acetyl cholinesterase 0.15

insulin b 0.05 hGST 0.15 beta-MSH 0.02 KLH 0.15

GST 0.04 TNF-alpha 0.14 MIF 0.02 acid collagen 0.14

PLP 0.04 substance p 0.14 HSP40 20.04 protamine sulfate 0.13

HSP60-peptide 30 0.02 peroxidase 0.14 vimentin 20.04 GAD 0.13

CA-125 0.01 thyroglobulin 0.12 hrMOG 20.04 HSP60- peptide 12 0.13

caspase8 0.00 vasopresin 0.11 cytokeratin 18 20.05 myeloperoxidase 0.12

protamine sulfate 20.01 annexin 67 0.11 complement C5 20.05 substance p 0.12

vimentin 20.02 collagenase 0.10 pepstatin a 20.06 e.coli LPS 0.11

HSP60-peptide34 20.04 HSP60-peptide 7 0.09 oligo T 20.08 ssDNA 0.10

hEGF 20.05 melatonin 0.09 hGST 20.08 b2 glycoprotein 0.07

defensin 2 20.07 hemoglobin b 0.09 oligo A 20.09 IL-21 0.07

factor 2 20.08 PTH 0.09 ANP 20.10 HSP60-peptide 2 0.07

big gastrin 20.11 enolase 0.07 insulin b 20.11 CA-125 0.06

acid collagen 20.12 HSP60-peptide 2 0.06 LPS 20.13 enolase 0.06

ANP 20.12 pg LPS 0.04 insulin a 20.15 IL-8 0.06

Autoantibodies and Tumor State
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IgM antibodies IgG antibodies

Shared Mean Non shared Mean Shared Mean Non shared Mean

Ab reactivities reactivity Ab reactivities reactivity Ab reactivities reactivity Ab reactivities reactivity

spectrin 20.13 HSP70-peptide 30 0.04 spectrin 20.16 lactoferrin 0.04

LHRH 20.14 oligo TAT 0.02 HSP60-peptide 13 20.16 p53-peptide 8 0.02

p53-peptide 12 20.17 TNF-R 20.01 carcitonin 20.17 hemoglobin b 0.02

p53-peptide 15 20.19 p53-8 20.02 MMP3 20.17 TNF-R 0.02

glucagon 20.19 TCR bchain/pN12 20.02 plasmin 20.17 p53-peptide 24 0.00

HSP60 20.20 annexin 37 20.02 annexin 67 20.18 diabetes associated peptide 0.00

hr MOG peptide 94-112 20.21 HSP60 20.02 HSP70-peptide 13 20.18 LHRH 20.01

HSP70-peptide13 20.21 b2 microglubulin 20.03 p53-peptide 22 20.19 60-peptide 29 20.02

H28 20.21 myc bp 20.03 alpha-cristallin 20.20 b2 microglubulin 20.04

lipid A 20.22 alpha-cristallin 20.03 p53-wt 20.21 laminin 20.04

gst-NAPc 20.22 p53 mutant 20.05 myc bp 20.21 MART1 20.06

HSP60-peptide 37 20.23 lactoferrin 20.06 actin 20.21 peroxidase 20.07

tubulin 20.24 phospho ea 20.10 h4 20.21 gelsolin 20.07

MMP3 20.24 Dly 20.10 p53-peptide 25 20.21 CA19-9 20.11

carcitonin 20.24 p53-peptide 6 20.11 IL-4 20.22 GroEL 20.13

plasmin 20.25 oligo ATA 20.11 p53-peptide 3 20.24 a2-macroglubulin 20.14

beta-MSH 20.25 gamma-MSH 20.12 melatonin 20.25 IL-15 20.14

HSP60-peptide 16 20.26 TAAT 20.12 Dly 20.25 H13 20.15

p53-peptide 14 20.26 hEGF 20.13 thrombin 20.25 p53 mutant 20.16

protease 20.27 cytokeratin 8 20.15 70-peptide 12 20.26 p53-peptide 14 20.21

diabetes associated peptide 20.27 p53-peptide 11-186 20.17 gamma-MSH 20.26 rat MBP 20.22

b-amyeloid 20.28 HSP70-peptide 8 20.21 70-peptide 32 20.27 HSP60-peptide 4 20.24

c peptide 20.28 HSP70-peptide 9 20.29 endothelin 1 20.27 HSP60-peptide 24 20.24

MMP2 20.29 PPD 20.30 heparin 20.28 HSP70-peptide 36 20.25

gst MUPP1 20.29 p53-peptide 24 20.31 HSP70-peptide 37 20.28 ribonuclease a 20.25

HSP60-peptide 20 20.30 brain extract 20.31 HSP60-peptide 20 20.28 Galectin-1 20.25

SOD 20.33 70-peptide 26 20.31 TCR bchain/C2 20.28 Oligo ATTA 20.27

endothelin 1 20.34 melanostatin 20.32 HSP70-peptide 12 20.28 EGF 20.27

HSP70-peptide 10 20.36 laminin 20.32 HSP60-peptide 6 20.28 HSP65 20.27

ribonuclease a 20.36 TCR bchain/pC2C 20.33 p53-peptide 15 20.28 hemoglobin a 20.27

HSP70-peptide 37 20.36 rat MBP 20.34 HSP70-peptide 22 20.28 cytokeratin 8 20.28

GroEL 20.40 a2-macroglubulin 20.34 PLP 20.30 HSP60-peptide 30 20.29

kinesin 20.40 p53-peptide 26 20.34 fibrin 20.30 HSP70-peptide 31 20.29

HSP70-peptide 32 20.41 myeloperoxidase 20.37 hr MOG 94-112 20.33 tubulin 20.29

HSP70-peptide 12 20.41 salmonella-LPS 20.37 HSP60-peptide 32 20.34 HSP90 20.31

TCR bchain/C1 20.42 HSP60-peptide 12 20.40 melanostatin 20.34 tropomyosin 20.32

HSP70-peptide 36 20.42 HSP60-peptide 5 20.44 HSP60-peptide 16 20.35 HDL 20.32

thrombin 20.44 p53-peptide 2 20.44 HSP60-peptide 37 20.36 p53-peptide 12-168 20.33

HSP70-peptide 22 20.47 HSP70-peptide 14 20.45 endothelin 2 20.36 HSP60-peptide 17 20.34

HSP60-peptide 6 20.47 proinsulin 20.46 HSP70-peptide 11 20.36 HSP70-peptide 18 20.34

HSP70-peptide 40 20.50 tropomyosin 20.47 MBP 20.36 collagenase 20.36

IL-15 20.50 vitronectin 20.48 oligo ATA 20.37 protease 20.36

p53-peptide 21 20.49 H3 20.37 HSP60-peptide 10 20.37

H13 20.51 oligo TAT 20.37 HSP71 20.40

factor x 20.54 TCR-alpha2 20.38 HSP70-peptide 40 20.41

HSP70-peptide 30 20.39

HSP60-peptide 7 20.40

Healthy C57BL/6 mice manifest common autoantibody reactivities to some self-antigens and individual autoantibody reactivities to other self-antigens. Each reactivity
was divided by the median reactivity of each sample and the log of the reactivities was taken. Thus, values lower than zero represent values lower than the median for
the appropriate sample. The antigens were then divided by the variance of the log-reactivity over the healthy samples.
doi:10.1371/journal.pone.0006053.t001

Table 1. Cont.
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clustering serum antibodies 17 days after tumor resection. Both

IgM and IgG antibodies to particular antigens separated the two

groups of mice; this is not surprising: the mice that bore D122

tumor were evolving towards death by metastasis, while those

bearing the A9F1 clone were cured. The mice that were cured of

the A9F1 tumor by resection were then bled again two weeks later

(30 days after resection), and the sera from both time points after

resection were clustered. Figure 7 shows that the second post-

resection sera manifested an autoantibody pattern that differed

from that found in the sera collected two weeks earlier.

We also looked for clusters of antigens that manifested a

correlated profile in response to changes over time in response to

A9F1 tumor growth and the resection. Figure 8 shows two sets of

correlated antigen reactivities measured in log-scale intensities.

Note the differences between the sets of antigen reactivities

marked by blue or red lines: The antigen reactivities marked in red

did not appear to change in their IgG binding reactivity during the

pre-tumor and A9F1 tumor growth periods; however tumor

resection was associated with an increase in their antibody

reactivity. The antigen reactivities marked in blue, in contrast,

manifested an increase in their IgG reactivities during early tumor

growth followed by a marked decrease in reactivity with the

removal of the A9F1 tumor. The IgG reactivity to this blue group

of antigens increased again two weeks after the resection. Thus

various antigen reactivities form sets defined by correlated

behavior associated with tumor growth or resection.

Discussion

In this paper, we studied the IgG and IgM antibody repertoires

of inbred C57BL/6 mice and the changes in these repertoires

associated with the state of implanted syngeneic tumor cells. We

used an antigen chip microarray that projected the serum

antibodies onto a selected set of 327 antigens, mostly self-antigens.

This projection cannot tell us about the immunogenic stimuli that

induced the antibodies, nor can it define the affinity or the

specificity of any particular antibody molecule or collective of

antibody molecules. Indeed, a positive antigen-binding signal

probably reflects a collective mixture of polyclonal and cross-

reactive serum antibodies binding to a variety of structural

epitopes exposed by each spotted antigen. This multiplex study

was not designed to identify particular tumor-associated antigens

that might have specifically immunized the tumor-bearing host.

Nevertheless, the projection of serum antibody reactivities on the

array of self-antigens provided a global view of reactivity patterns

within the autoantibody repertoire that were amenable to

detection and analysis by informatic techniques. Indeed, the

success of a large-scale pattern of autoreactivites to distinguish

between tumor-bearing and healthy mice suggests that patterns of

low-level autoantibodies might characterize the tumor state at least

as well as the long-sought, but frustratingly elusive tumor-specific

antibody.

Before implantation of the tumor cells, the healthy mice

manifested two types of autoantibody reactivity patterns detectable

at 1:5 serum dilution: a collective pattern common to the group

(marked by a relatively low degree of individual variation) and

individual patterns for each mouse (marked by a high degree of

variation between mice). The common pattern of C57BL/6 mice

was composed of some antigens to which there were strong and

consistent antibody reactivities and of other antigens to which

there were much weaker reactivities (Figure 2). The existence of

individual autoantibody reactivities is intriguing; the mice were

bred to possess identical genomes and lived in a seemingly

identical environment. Individual differences in autoantibody

reactivities, if not due to chance variation, suggest that the healthy

immune system can reflect quite subtle individual differences in

Figure 3. Specific antigens repeatedly separate test groups. Various informatic techniques generated multiple sets of antigen reactivities that
were able to successfully separate test groups of mice (pre-tumor and post-tumor mice, for example; see text and Table 2); some of these antigens
appeared with a high frequency in the various antigen sets. The frequency of appearance of these specifically successful antigens was significantly
greater than expected from a random distribution. Here is a representative plot of the antigen frequency for the lists of 25 antigens generated by a
Genetic Algorithm. The results were similar for the other methods. The thick full (IgM) and dashed lines (IgG) represents the antigen distribution in
the separating scores, while the thin dashed doted line is the expected distribution using a random choice at each stage.
doi:10.1371/journal.pone.0006053.g003
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development and environment, and not only responses to overt

infections and other strongly immunogenic stimuli. The immuno-

genic stimuli that generated the common autoantibody patterns

detected in the healthy mice are also unknown. Common

autoantibody patterns are not limited to inbred mice; the cord

bloods of healthy newborn humans manifest common IgM and

IgA autoantibody repertoires [23].

Interestingly, some of the common antigens bound by

autoantibodies in newborn human cord blood [19] were also

bound by the natural autoantibodies of the inbred C57BL/6 mice:

glutamic acid decarboxylase (GAD); myelin oligodendrocyte

glycoprotein (MOG); fibrin; HSP60 peptides; and HSP47. Other

human autoantibody reactivities appear in some but not all

C57BL/6 mice: galectins 1 and 3; beta2-microglobulin; gelsolin;

fibrinogen; annexin; and others (see Figure 4). Thus, some

autoantibody reactivities may be common to the two species,

some may be species-specific and some characterize individuals.

Note that both humans and mice manifest reactivities to linear

peptides of self-molecules, and these peptide reactivities may be

more prominent than the reactivities to the whole parent

molecule; see, for example, the IgG and IgM autoantibodies to

peptides of HSP60 and HSP70 in Figure 5. However, we need to

test many more samples on a wider range of arrayed self-molecules

before we draw firm conclusions about the scope of the

Figure 4. Significantly recurrent antigen reactivities mark tumor-bearing mice. Feature selection algorithms were used to detect sets of
antigen reactivities that marked mice subsequent to tumor inoculation and growth. The Table lists those reactivities that recurred with a significant
frequency among the different lists of informative antigens. The expected frequency of chance recurrence of each of these antigens in the various
lists is 0.05 and any frequency above 0.09 is significant (p,0.01). The bars represent frequencies of appearance of 0.1 or greater; the closed bars are
IgG reactivities and open bars are IgM reactivities. Note that six of the antigen reactivities were significantly frequent for both IgG and IgM reactivities:
fibrinogen, fibrin, protamine sulfate, SOD and two different peptides of p53.
doi:10.1371/journal.pone.0006053.g004
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autoantibody homunculus [19]. It is not known at present how

these homuncular autoantibodies arise, why only some self-

antigens are recognized, why some reactivities are strong and

others weak, why some are shared and others individualized, and

what might be the evolutionary advantage of natural autoanti-

bodies prevalent in healthy individuals [23].

In the present study, we found that the implantation of

syngeneic tumor cells was associated with changes in autoantibody

reactivities. Note that no single autoantibody reactivity was found

to characterize the tumor state; it is conceivable that tumor-

specific autoantibody reactivities to a single tumor antigen do exist,

but such an antigen apparently was not included among those

arrayed on the chip. Nevertheless, the tumor state could still be

characterized by patterns composed of many autoantibody

reactivities binding to sets of self-antigens on the chip. In other

words, a specific biomarker may be generated by a pattern formed

by a collective of autoantibodies, and not necessarily by one

specific autoantibody [8]. Note that the tumors in this study arose

from the inoculation of pre-formed tumor cells; we are presently

investigating the effects on autoantibody patterns of a tumorigenic

process induced de novo by a chemical carcinogen.

At a more microscopic level of analysis, we used a clustering

method to detect autoantibody patterns associated with tumor

clonotype, tumor development, metastasis and curative resection

in the relatively small numbers of available mice. The results lead

to the general impression that the low-titer autoantibody

repertoire is indeed capable of dynamically registering changes

in tumor state [8]. Increasing the numbers of mice and the

numbers of molecules spotted on the microarray likely will shed

more light on the actual self-molecule indicators of the tumor state.

Nevertheless, the present results suggest some features worthy of

note: Informative low-titer autoantibody patterns include IgM

and/or IgG reactivities to molecules, a) known to associated with

tumors (p53, CA, PSA, MAGE, MART, cytokeratin), although

not necessarily known to be connected to the 3LL lung carcinoma;

b) known to be associated with autoimmune diseases, but not to

tumors (insulin, MOG, myosin, DNA); and c) not known to be

associated with either tumors or autoimmune diseases (gliadin,

fibrinogen, glucagon). Thus, low-level autoantibodies reflecting the

tumor state appear to include a cross-section of autoreactivities to

various antigens that can induce high titers of specific autoanti-

bodies associated with specific diseases.

The response of the autoantibody repertoire to the tumor state

generated several observations:

1. Individual mice inoculated with the same tumor cells manifest

common autoantibody reactivities; a tumor state can generate

an immune-system signature based on low-titer reactivities.

Figure 5. Clustering of antibody reactivities discriminates between mice bearing different tumor clones. Hierarchical clustering of IgG
(A) and IgM (B) antibody reactivities in mice bearing 18 mm3 primary of the A9F1 and D122 clones based on separating antigens that were chosen
by the Wilcoxon rank-sum test in the array (see supplementary Table S3I, Supplementary Data). A color code denoting D122 (blue) and A9F1 (green)
samples is shown at the top and bottom. The color scale shows the relative degree of antibody binding from low (dark blue) to high (dark red). The
mice bearing different clones are separated by their IgM reactivities.
doi:10.1371/journal.pone.0006053.g005
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2. A tumor-state immune signature may be systemic rather than

discrete; the immune system can undergo a generalized

response in which a pattern of reactivities can be more

informative than any single reactivity.

3. A tumor-state signature may include autoantibodies binding to

self-antigens not necessarily associated with the specific tumor.

4. Self-antigens associated with autoimmune diseases can serve as

components in a tumor signature in the absence of a clinically

overt autoimmune disease.

The findings support the idea that patterns of natural

autoantibodies – low-titer antibodies expressed in the absence of

designed immunization – can be informative of aspects of body

state [7]. It would be especially important to learn whether a

global analysis of autoantibody patterns might uncover immune

biomarkers useful in managing human tumors. Ultimately, the

low-level antibody repertoire may provide new ways for

diagnosing or predicting response to treatment of human tumors.

It thus appears possible to mine important information about the

state of the body using the thinking and the informatic tools of

systems immunology.

Methods

Cell cultures
The highly metastatic D122 clone and the non-metastatic A9F1

clone of the 3LL Lewis lung carcinoma, derived from the C57BL/

6 mouse, [17,18] were maintained in culture in DMEM

supplemented with 10% heat-inactivated fetal calf serum,

glutamine, combined antibiotics, sodium pyruvate and nonessen-

tial amino acids.

Mice
Eight-week old inbred C57BL/6 male mice were maintained in

the animal facilities of the Weizmann Institute of Science under

specific pathogen-free conditions. All animal experiments were

carried out with the approval of the Institutional Animal Care and

Use Committee of the Weizmann Institute, which meets the

standards, required by the UKCCCR guidelines and is recognized

by AAALAC International. Eight days after the first bleeding,

mice were divided into four groups. Groups 1 and 2, consisting of

10 mice each, were injected intra-footpad with 26105 D122 cells/

mouse. Groups 3 and 4, consisting of 10 mice each, were injected

Figure 6. Clustering of antibody reactivities discriminates between mice 17 days following resection of the different clones.
Hierarchical clustering of IgG (A) and IgM (B) reactivities for the A9F1 and D122 samples, collected 17 days post-resection, based on their reactivities
to separating antigens that were chosen by the Wilcoxon rank-sum test in the array (see supplementary Table S3II, Supplementary Data). A color code
denoting A9F1 (light blue) and D122 (pink) samples is shown at the top and bottom. The color scale shows the relative degree of antibody binding
from low (dark blue) to high (dark red). The groups are successfully separated both by IgM and IgG reactivities.
doi:10.1371/journal.pone.0006053.g006
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with 26105 A9F1 cells/mouse. After 26 days, when the primary

tumors had reached 8 mm in diameter, the mice in groups 1 and 3

were anesthetized and the tumors were resected. We followed the

spread of metastases in mice in group 1 and the recovery and cure

of mice in group 3 (see Figure 1 for a time line of experimental

procedures and Table 2 for details of samples used in the analysis).

Mice with primary tumors were anesthetized and killed when

tumors reached .20 mm in diameter or when death from lung

metastasis appeared imminent.

Sera collection and bleeding schedule
Serum samples were collected before and at several time points

following tumor-cell inoculation (see Figure 1 for the timetable).

Blood was taken from the lateral tail vein, allowed to clot at room

temperature, and following centrifugation, the sera were stored at

220uC. Five ml of each sample were diluted (1:5) in PBS and then

incubated with the antigen-spotted slide for an hour at 37uC.

Previous studies have shown that informative patterns of low-titer

autoantibodies can be detected at dilutions of 1:5 or 1:10 (1, 3), but

this information is lost at higher titers of test serum [24]. The time

of bleeding and the stage of disease of each mouse are described in

Table 2. Mice that were bled at less than three measurement

points were removed from the data set.

Antigens and microarray preparation
Antigen microarrays were prepared as described previously [1].

We spotted 327 antigens, including proteins, synthetic peptides,

nucleotides, phospholipids, tumor associated and other self and

non-self molecules. See Supplementary Data, Table S4 for the full

list of antigens.

After incubation with the test sera, the arrays were developed

with a 1:500 dilution of detection antibodies. Two detection

antibodies were used in parallel on each microarray: a goat anti-

mouse IgG Cy3-conjugated antibody and a goat anti-mouse IgM

Cy5-conjugated antibody (purchased from Jackson ImmunoR-

esearch, West Grove, PA).

Data Analysis
The processed data set consists of two 327 by 73 matrices

of IgG and IgM reactivities. Each column contains the

reactivities measured on a given array (sample) and each row

contains the reactivities measured for a given antigen over all

arrays.

Raw data (after normalization, see below) were analyzed using

GeneSpringH software version 7 (Silicon Genetics, Redwood City,

CA) and Matlab (version 6.5.0.180913a, release 13; The Math-

Works).

Figure 7. Clustering of antibody reactivities discriminates between mice following resection of the A9F1 clone at different time
points. Hierarchical clustering of IgG (A) and IgM (B) reactivities 17 and 30 days after resection of the A9F1 tumors performed at 8 mm3. The
separating antigens were chosen by the Wilcoxon rank-sum test (see supplementary Table S3III, Supplementary Data). A color code denoting early
(light blue) and late (blue) time points is shown. The color scale shows the relative degree of antibody binding from low (dark blue) to high (dark red).
The IgG and IgM reactivities both separated the groups.
doi:10.1371/journal.pone.0006053.g007
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Figure 8. The dynamic response to correlated sets of antigens by mice bearing the A9F1 tumor. The figure shows the correlated
reactivities over time to two sets of antigens. The y axis represents the normalized intensity (log scale) level of the antibody reactivity to each antigen;
the x axis marks 4 time points in the history of the mice bearing the A9F1 tumor. The group of IgG reactivities to the antigens marked in red
manifested no change in intensity from the pre-tumor to the primary tumor state of 5 mm3. Resection of the primary tumor was associated with an
increase in their antibody reactivity 17 days later with a fall in reactivity 30 days later. The reactivities to the antigens marked in blue, in contrast,
showed an increase in IgG reactivity (note the log scale) during primary tumor growth followed by a significant fall in reactivity early after resection
with a later rise. Thus, there appear to be correlated reactivities to sets of antigens.
doi:10.1371/journal.pone.0006053.g008

Table 2. Sample description.

Tumor type Group State Time of bleeding Pathology Number of microarrays

None 1,2,3,4 Pre-tumor prior to tumor cell inoculation None 23

D122 1,2 Early stage 22 days after cell inoculation 5–6 mm diameter 11

D122 2 Not resected 33days after cell inoculation 18 mm diameter 5

D122 1 Resected 26 days after inoculation 17 days after resection Metastasis onset 6

A9F1 3,4 Early stage 19 days after cell inoculation 5–6 mm diameter 12

A9F1 4 Not resected 33 days after cell inoculation 18 mm diameter 6

A9F1 3 Resected 26 days after inoculation 17 days after resection Recovery 4

A9F1 3 Resected 26 days after inoculation 30 days after resection Cured 6

Nine-week old mice were divided into four groups. Groups 1 and 2, consisting of 10 mice each, were injected intra-footpad with 26105 D122 cells per mouse. Groups 3
and 4, consisting of 10 mice each, were injected 26105 A9F1 cells per mouse. After 26 days, when the primary tumors had reached 8 mm in diameter, animals in groups
1 and 3 were anesthesized and the tumors were resected. We followed the spread of metastases in mice in group 1 and the recovery and cure of mice in group 3 (see
Figure 1).
doi:10.1371/journal.pone.0006053.t002
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Normalization
Prior to normalization, any measurement value of less than 0.01

was set to an arbitrary cutoff value of 0.01. The data were then

normalized by dividing each slide array by its median intensity

value, thus producing comparable reactivity levels for different

slide arrays. The antigen reactivity was defined by the mean log

intensity measures of at least 4 replicate spots for that antigen on

each slide.

Filtering
The ‘Filtering by expression value’ option in GeneSpring was

used to eliminate antigens that do not meet a minimum cut-off

level in any of the tests; the cut-off signal intensity level was set to

590 for IgG and 100 for IgM reactivity. Thus, antigens that failed

to reach a reactivity level higher than the threshold in at least one

group were filtered out. Lists of reactive antigens are described in

supplementary Table S5 for IgG antibodies and in supplementary

Table S6 for IgM antibodies. Some of the antigens in these two

lists intersected; they were reactive in both IgG and IgM antibody

signal intensities.

Clustering analysis
Two different data sets were created, each one holding all

the sample reactivity for a particular isotype, IgG or IgM. We

used a Wilcoxon rank sum test to find significantly different

antigens separating each of the groups, and clustered the data

according to these antigens (denoted classifier antigens). The

Benjamini and Hochberg false discovery rate method [25] was

applied using a p-value of 0.05 to determine significance.

Hierarchical clustering was done using the distance measure

and the smooth correlation measure for the samples and

antigens, respectively (see GeneSpring for detailed description

of these measures). Supplementary Table S3 (I–III) describe

the p-values (using the Wilcoxson rank sum test) for the

classifier antigens for each of the different comparisons that are

presented in figures 4 through 6. Both the ‘cluster by

condition’ and cluster by genes’ (in our case antigens) functions

were used. Clustering by samples allowed samples with similar

behavior to be grouped together, while clustering by antigens

allowed us to test which antigens showed correlated behavior

over the samples.

Leave one out (LOO) test
We used a leave-one-out cross-validation. This method has been

shown to generate an essentially unbiased estimator of the

generalization properties of statistical models [20] and therefore

provides a reasonable criterion for model selection and compar-

ison. An advantage of this method is that the original data are used

to test a parameter set, which is yet being trained. It is therefore

very useful for small data sets. The current data set contains 23

pre-inoculation (healthy) samples and 34 post-inoculation (sick)

samples. To achieve the best solution, we used the LOO method

each time to test a sample (health or sick) that had been removed

from the training set.

Support Vector Machine (SVM)
For classification of autoantibody patterns we used a linear

SVM algorithm [21,26]. The SVM finds an optimal linear

hyerplane that separates two data sets, in our case tumor-bearing

and healthy mice, or mice bearing different tumor clones, and so

forth. The only parameter that needs to be specified in advance is

the slack variable coefficient.

Supporting Information

Figure S1 Standard deviation (StD) of log-reactivity in healthy

samples (first bleeding before inoculation) and sick samples (after

inoculation, but before resection). The standard deviations before

and after inoculations are highly correlated, showing that the same

antigens have a consistent low or high standard deviation (IgM:

R = 0.707, p = 1.e-30,IgG R = 0.8112,p = 1.e-46).

Found at: doi:10.1371/journal.pone.0006053.s001 (0.36 MB TIF)

Table S1 Antibody reactivities that were removed from the

analysis due to low reactivity and low variation among samples.

The mean antibody reactivities and the standard deviations

manifested by the serum IgM and IgG binding to each antigen

were calculated for each group of samples. We removed from

consideration 129 (IgM) and 124 (IgG) antigens to which there was

little or no meaningful reactivity because uniformly low or absent

reactivities would manifest very little individual variation a priori.

The signal intensity threshold for IgM and IgG reactivity were set

to 100 and 590 respectively, based on the GeneSpring ‘error-

model’ function.

Found at: doi:10.1371/journal.pone.0006053.s002 (0.14 MB

DOC)

Table S2 LOO classification success, using either IgG (second

row) or IgM (third row). Two classifications were performed. The

first classification (second and third columns) was between the

second and third bleeding. In this classification, all mice bore

tumors, and the only difference was the tumor size. The results

presented are the percentage of correct results. The second

classification (fourth and fifth columns) was between the first

bleeding and the second and third bleeding - between healthy and

tumor bearing mice.

Found at: doi:10.1371/journal.pone.0006053.s003 (0.03 MB

DOC)

Table S3 The p-values for the classifier antigens for each of the

different comparisons presented in figures 4 through 6. Two

different data sets were created, each one holding all the sample

reactivity for a particular isotype, IgG or IgM. We used a

Wilcoxon rank sum test to find significantly different antigens

separating each of the groups, and clustered the data according to

these antigens (denoted classifier antigens). The Benjamini and

Hochberg false discovery rate method was applied using a p-value

of 0.05 to determine significance. Wilcoxon rank-sum test p-values

for the separating antigens are presented between (I) the primary

tumors, A9F1 and D122, (II) A9F1 and D122-resected samples.

(III) 17-day the the 30-day post-resection A9F1 samples.

Found at: doi:10.1371/journal.pone.0006053.s004 (0.04 MB

DOC)

Table S4 The complete list of antigens that were spotted on the

microarray is shown. The antigen molecules are presented in

groups according to loosely defined groups: heat shock proteins or

peptides (HSP); tissue antigens; immune system molecules;

structural molecules; hormones; cellular metabolism molecules;

plasma proteins; synthetic antigens; tumor-associated and trans-

plantation-related antigens; p53 peptides; and other antigens.

Found at: doi:10.1371/journal.pone.0006053.s005 (0.30 MB

DOC)

Table S5 Informative antigens for IgG reactivity. Antigens that

manifested an IgG Ab reactivity level above the signal intensity

threshold (590) at least in one group of samples are shown (see also

the legend to supplementary Table 1).

Found at: doi:10.1371/journal.pone.0006053.s006 (0.03 MB

DOC)
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Table S6 Informative antigens for IgM reactivity. Antigens that

manifested an IgM Ab reactivity level above the signal intensity

threshold (100) at least in one group of samples are shown (See also

the legend to supplementary Table 1).

Found at: doi:10.1371/journal.pone.0006053.s007 (0.03 MB

DOC)

Methods S1

Found at: doi:10.1371/journal.pone.0006053.s008 (0.03 MB

DOC)
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