3 research outputs found
Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis
Emotions play a crucial role in human life and affect mental health. Understanding the neural patterns associated with emotions is essential. Previous studies carried out some exploration of the neural features of emotions, but most have designed experiments in two-dimensional (2D) environments, which differs from real-life scenarios. To create a more real environment, this study investigated emotion-related brain activity using electroencephalography (EEG) microstate analysis in a virtual reality (VR) environment. We recruited 42 healthy volunteers to participate in our study. We explored the dynamic features of different emotions, and four characteristic microstates were analyzed. In the alpha band, microstate A exhibited a higher occurrence in both negative and positive emotions than in neutral emotions. Microstate C exhibited a prolonged duration of negative emotions compared to positive emotions, and a higher occurrence was observed in both microstates C and D during positive emotions. Notably, a unique transition pair was observed between microstates B and C during positive emotions, whereas a unique transition pair was observed between microstates A and D during negative emotions. This study emphasizes the potential of integrating virtual reality (VR) and EEG to facilitate experimental design. Furthermore, this study enhances our comprehension of neural activities during various emotional states
The Sixth Visual Object Tracking VOT2018 Challenge Results
The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).Funding agencies: Slovenian research agencySlovenian Research Agency - Slovenia [P2-0214, P2-0094, J2-8175]; Czech Science FoundationGrant Agency of the Czech Republic [GACR P103/12/G084]; WASP; VR (EMC2); SSF (SymbiCloud); SNIC; AIT Strategic Research Programme 2017 Visua</p