63 research outputs found

    An empirical study on dependence clusters for effort-aware fault-proneness prediction

    Get PDF
    A dependence cluster is a set of mutually inter-dependent program elements. Prior studies have found that large dependence clusters are prevalent in software systems. It has been suggested that dependence clusters have potentially harmful effects on software quality. However, little empirical evidence has been provided to support this claim. The study presented in this paper investigates the relationship between dependence clusters and software quality at the function-level with a focus on effort-aware fault-proneness prediction. The investigation first analyzes whether or not larger dependence clusters tend to be more fault-prone. Second, it investigates whether the proportion of faulty functions inside dependence clusters is significantly different from the proportion of faulty functions outside dependence clusters. Third, it examines whether or not functions inside dependence clusters playing a more important role than others are more fault-prone. Finally, based on two groups of functions (i.e., functions inside and outside dependence clusters), the investigation considers a segmented fault-proneness prediction model. Our experimental results, based on five well-known open-source systems, show that (1) larger dependence clusters tend to be more fault-prone; (2) the proportion of faulty functions inside dependence clusters is significantly larger than the proportion of faulty functions outside dependence clusters; (3) functions inside dependence clusters that play more important roles are more fault-prone; (4) our segmented prediction model can significantly improve the effectiveness of effort-aware fault-proneness prediction in both ranking and classification scenarios. These findings help us better understand how dependence clusters influence software quality

    Correlated Randomness Teleportation via Semi-trusted Hardware - Enabling Silent Multi-party Computation

    Get PDF
    With the advancement of the trusted execution environment (TEE) technologies, hardware-supported secure computing becomes increasingly popular due to its efficiency. During the protocol execution, typically, the players need to contact a third-party server for remote attestation, ensuring the validity of the involved trusted hardware component, such as Intel SGX, as well as the integrity of the computation result. When the hardware manufacturer is not fully trusted, sensitive information may be leaked to the third-party server through backdoors, steganography, and kleptography, etc. In this work, we introduce a new security notion called semi-trusted hardware model, where the adversary is allowed to passively or maliciously corrupt the hardware. Therefore, she can learn the input of the hardware component and might also tamper its output. We then show how to utilize such semi-trusted hardwares for correlated randomness teleportation. When the semi-trusted hardware is instantiated by Intel SGX, to generate 10k random OT\u27s, our protocol is 24X and 450X faster than the EMP-IKNP-ROT in the LAN and WAN setting, respectively. When SGX is used to teleport garbled circuits, the resulting two-party computation protocol is 5.3-5.7X and 43-47X faster than the EMP-SH2PC in the LAN and WAN setting, respectively, for the AES-128, SHA-256, and SHA-512 evaluation. We also show how to achieve malicious security with little overhead

    Good outcomes of elbow arthroscopy-assisted absorbable screw fixation for capitellum fracture of the humerus in children: a case series

    Get PDF
    BackgroundCapitellum fractures are rare coronal fractures of the distal humerus which accounts for 6% of all distal humeral fractures and only 1% of all elbow fractures. The purpose of this study was to investigate the efficacy and complications of arthroscopically assisted reduction and fixation with absorbable screws for capitellar fracture of the humerus in children.MethodsThis was a retrospective case series study, which considered four patients (4 elbows), ranging from 10 to 15 years old, who were treated by arthroscopic-assisted percutaneous absorbable screw between 2018 and 2020. The elbow flexion-extension and forearm supination-pronation ranges of motion (ROM) were measured at the preoperative examination and last follow-up examination. Finally, the clinical and radiological results were assessed.ResultsThe result of operations is satisfactory. The mean follow-up was 3.0 years (range 2–3.8 years). Average range of motion significantly improved from pre- to postoperation, with forearm supination from 60°(50°−60°) to 90°(90°) and pronation improved from 75°(70°−80°) to 90°(90°). The postoperative elbow flexion-extension range of motion was significantly higher compared with range of motion before surgery (P < 0.001; r = 0.949). At the final follow-up examination, the Mayo Elbow Performance Score was excellent. Satisfactory clinical results were achieved in all patients, and no postoperative complications were observed.ConclusionsIt is an effective and safe surgical option to use arthroscopic-assisted percutaneous absorbable screw fixation for treating capitellum fracture of the humerus without any complications in children.Level of evidenceLevel IV; case series

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cyclin

    Seroprevalence and Determinants Associated with Mumps Antibodies after 20 Years of MMR Vaccination in Urban Area of Shanghai, China

    No full text
    A resurgence of the mumps epidemic in highly vaccinated populations has occurred in recent years in many countries. This study aimed to evaluate the seroprevalence to mumps in urban areas of Shanghai, where a measles-mumps-rubella (MMR) vaccination had been implemented for 20 years. Mumps IgG antibodies were tested in 2662 residual sera from all ages in an urban area of Shanghai. A linear regression method was performed to assess the persistence of mumps antibodies after MMR vaccination. A logistic regression method was used to analyze the variables associated with seronegative sera. The overall age- and gender-adjusted seroprevalence of mumps antibodies reached 90% (95% CI: 90.0–90.2). The antibody concentration declined significantly in the first eight years after the second dose of MMR. The multivariate analysis identified that males, age groups, especially 17–19 years and no dose of vaccination, as well as one dose of vaccination, as factors associated with an increased risk of seronegative sera. A high seroprevalence to mumps has been achieved in the urban areas of Shanghai. A declining antibody level of mumps after the second dose of MMR may put a potential risk of recurrence of mumps. The two-dose MMR vaccine schedule is superior to one-dose schedule for mumps control
    • …
    corecore