8 research outputs found

    A multicentre validation of Metasin: a molecular assay for the intraoperative assessment of sentinel lymph nodes from breast cancer patients

    Get PDF
    Aims: Treatment strategies for breast cancer continue to evolve. No uniformity exists in the UK for the management of node‐positive breast cancer patients. Most centres continue to use conventional histopathology of sampled sentinel lymph nodes (SLNs), which requires delayed axillary clearance in up to 25% of patients. Some use touch imprint cytology or frozen section for intraoperative testing, although both have inherent sensitivity issues. An intraoperative molecular diagnostic approach helps to overcome some of these limitations. The aim of this study was to assess the clinical effectiveness of Metasin, a molecular method for the intraoperative evaluation of SLNs. Methods and results: RNA from 3296 lymph nodes from 1836 patients undergoing SLN assessment was analysed with Metasin. Alternate slices of tissue were examined in parallel by histology. Cases deemed to be discordant were analysed by protein gel electrophoresis. There was concordance between Metasin and histology in 94.1% of cases, with a sensitivity of 92% [95% confidence interval (CI) 88–94%] and a specificity of 97% (95% CI 95–97%). Positive and negative predictive values were 88% and 98%, respectively. Over half of the discordant cases (4.4%) were ascribed to tissue allocation bias (TAB). Conclusions: Clinical validation of the Metasin assay suggests that it is sufficiently sensitive and specific to make it fit for purpose in the intraoperative setting

    p75 neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis

    No full text
    Hepatic myofibroblast apoptosis is critical to resolution of liver fibrosis. We show that human hepatic myofibroblasts co-express p75(NTR) (p75 neurotrophin receptor) and sortilin, thus facilitating differential responses to mature and pro nerve growth factor (proNGF). Although mature NGF is proapoptotic, proNGF protects human hepatic myofibroblasts from apoptosis. Moreover, in recovery from experimental liver fibrosis, the decrease in proNGF parallels loss of hepatic myofibroblasts by apoptosis. Macrophage-derived matrix metalloproteinase 7 (MMP7) cleaves proNGF in a concentration-dependent manner, and its expression in the liver coincides with falling proNGF levels. To define the dominant effect of p75(NTR)-mediated events in experimental liver fibrosis, we have used a mouse lacking the p75(NTR) ligand-binding domain but expressing the intracellular domain. We show that absence of p75(NTR) ligand-mediated signals leads to significantly retarded architectural resolution and reduced hepatic myofibroblast loss by apoptosis. Lack of the ligand-competent p75(NTR) limits hepatocyte and oval cell proliferative capacity in vivo without preventing hepatic stellate cell transdifferentiation. Conclusion: NGF species have a differential effect on hepatic myofibroblast survival. Our data suggest that cleavage of proNGF by MMP7 during the early phase of recovery from liver fibrosis alters the pro/mature NGF balance to facilitate hepatic myofibroblast loss. Whereas fibrosis develops in the absence of p75(NTR) signaling, the dominant effects of loss of p75(NTR) ligand-mediated events are the retardation of liver fibrosis resolution via regulation of hepatic myofibroblast proliferation and apoptosis, and the reduction of hepatocyte and oval cell proliferation
    corecore