5,223 research outputs found

    Central engine afterglow of Gamma-ray Bursts

    Full text link
    Before 2004, nearly all GRB afterglow data could be understood in the context of the external shocks model. This situation has changed in the past two years, when it became clear that some afterglow components should be attributed to the activity of the central engine; i.e., the {\it central engine afterglow}. We review here the afterglow emission that is directly related to the GRB central engine. Such an interpretation proposed by Katz, Piran & Sari, peculiar in pre-{\it Swift} era, has become generally accepted now.Comment: 4 pages including 1 figure. Presented at the conference "Astrophysics of Compact Objects" (July 1-7, 2007; Huangshan, China

    Spectral conditions for a graph to be Hamilton-connected

    Full text link
    In this paper we establish some spectral conditions for a graph to be Hamilton-connected in terms of the spectral radius of the adjacency matrix or the signless Laplacian of the graph or its complement. For the existence of Hamiltonian paths or cycles in a graph, we also give a sufficient condition by the signless Laplacian spectral radius

    Radiosonde observations of vertical wave number spectra for gravity waves in the lower atmosphere over Central China

    Get PDF
    International audienceVertical wave number spectra of inertial gravity waves in the troposphere and lower stratosphere over six stations at latitudes from 20° N to 40° N were statistically studied by using the data from Radiosonde observation on a twice daily basis at 08:00 and 20:00 LT. Statistically, the spectral characteristics seem to be independent of the local observation time, and show considerable conformity between the spectral of zonal and meridional kinetic energy densities. Compared with the spectra of the kinetic energy density, the spectra of the potential energy density are steeper. in addition the characteristic wave numbers of the spectra also show considerable consistency among the observations at different stations. As for the spectral slopes, they are systematically smaller (in magnitude) than the canon value of ?3, and exhibit slight height, seasonal and latitudinal variability. In addition to these universal characteristics, the spectral structures also exhibit departures and variations, and most of the departures and variations are related to the strong tropospheric jets. Generally, in the case of strong shear due to the tropospheric jet, there usually occur larger characteristic wave numbers and smaller spectral slopes. These departures seem to be persistent and climatological rather than transitory, indicating the significant impacts of the sheared background winds on the spectral structures of gravity waves

    The Interpretation and Implication of the Afterglow of GRB 060218

    Full text link
    The nearby GRB 060216/SN 2006aj was an extremely long, weak and very soft GRB. It was peculiar in many aspects. We show here that the X-ray, ultraviolet/optical and radio afterglow of GRB 060218 have to be attributed to different physical processes arising from different emission regions. From the several components in this burst's afterglow only the radio afterglow can be interpreted in terms of the common external shock model. We infer from the radio that the blast wave's kinetic energy was ∼1050\sim 10^{50} erg and the circumburst matter had a constant rather than a wind profile. The lack of a "jet break" up to 22 days implies that the outflow was wide θj>1\theta_j >1. Even though the late X-ray afterglow decays normally it cannot result from an external shock because of its very steep spectrum. Furthermore, the implied kinetic energy would have produced far too much radio. We suggest that this X-ray afterglow could be attributed to a continued activity of the central engine that within the collapsar scenario could arise from fall-back accretion. "Central engine afterglow" may be common in under-luminous GRBs where the kinetic energy of the blast wave is small and the external shock does not dominate over this component. Such under-luminous GRBs might be very common but they are rarely recorded because they can be detected only from short distances.Comment: 13 pages and 1 figure, submitted to JCA

    Is the late near-infrared bump in short-hard GRB 130603B due to the Li-Paczynski kilonova?

    Full text link
    Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the merger of two binary compact objects, specifically by two neutron stars or by a neutron star orbiting a black hole. According to the Li-Paczynski kilonova model, the merger would launch sub-relativistic ejecta and a near-infrared/optical transient would then occur, lasting up to days, which is powered by the radioactive decay of heavy elements synthesized in the ejecta. The detection of a late bump using the {\em Hubble Space Telescope} ({\em HST}) in the near-infrared afterglow light curve of the short-hard GRB 130603B is indeed consistent with such a model. However, as shown in this Letter, the limited {\em HST} near-infrared lightcurve behavior can also be interpreted as the synchrotron radiation of the external shock driven by a wide mildly relativistic outflow. In such a scenario, the radio emission is expected to peak with a flux of ∼100μ\sim 100 \muJy, which is detectable for current radio arrays. Hence, the radio afterglow data can provide complementary evidence on the nature of the bump in GRB 130603B. It is worth noting that good spectroscopy during the bump phase in short-hard bursts can test validity of either model above, analogous to spectroscopy of broad-lined Type Ic supernova in long-soft GRBs.Comment: 4 pages, 2 figures, published in ApJ Lette

    Ultrathin Acoustic Parity-Time Symmetric Metasurface Cloak

    Get PDF
    Invisibility or unhearability cloaks have beenmade possible by using metamaterials enabling light or sound to flow around obstacle without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate transforming cloak. Bending and stretching the coordinate grid in space require stringent material parameters; therefore, small inaccuracies and inevitablematerial losses become sources for unwanted scattering that are decremental to the desired effect.These obstacles further limit the possibility of achieving a robust concealment of sizeable objects from either radar or sonar detection. By using an elaborate arrangement of gain and lossy acousticmedia respecting parity-time symmetry, we built a one-way unhearability cloak able to hide objects seven times larger than the acoustic wavelength. Generally speaking, our approach has no limits in terms of working frequency, shape, or size, specifically though we demonstrate how, in principle, an object of the size of a human can be hidden from audible sound
    • …
    corecore