34,284 research outputs found

    Constraints on the Brans-Dicke gravity theory with the Planck data

    Full text link
    Based on the new cosmic CMB temperature data from the Planck satellite, the 9 year polarization data from the WMAP, the BAO distance ratio data from the SDSS and 6dF surveys, we place a new constraint on the Brans-Dicke theory. We adopt a parametrization \zeta=\ln(1+1/\omega}), where the general relativity (GR) limit corresponds to Ī¶=0\zeta = 0. We find no evidence of deviation from general relativity. At 95% probability, āˆ’0.00246<Ī¶<0.00567-0.00246 < \zeta < 0.00567, correspondingly, the region āˆ’407.0<Ļ‰<175.87-407.0 < \omega <175.87 is excluded. If we restrict ourselves to the Ī¶>0\zeta>0 (i.e. Ļ‰>0\omega >0) case, then the 95% probability interval is Ī¶181.65\zeta 181.65. We can also translate this result to a constraint on the variation of gravitational constant, and find the variation rate today as GĖ™=āˆ’1.42āˆ’2.27+2.48Ɨ10āˆ’13\dot{G}=-1.42^{+2.48}_{-2.27} \times 10^{-13} yrāˆ’1^{-1} (1Ļƒ1\sigma error bar), the integrated change since the epoch of recombination is Ī“G/G=0.0104āˆ’0.0067+0.0186\delta G/G = 0.0104^{+0.0186}_{-0.0067} (1Ļƒ1\sigma error bar). These limits on the variation of gravitational constant are comparable with the precision of solar system experiments.Comment: 7 pages, 5 figures, 2 table

    A single-level random-effects cross-lagged panel model for longitudinal mediation analysis

    Get PDF
    Cross-lagged panel models (CLPMs) are widely used to test mediation with longitudinal panel data. One major limitation of the CLPMs is that the model effects are assumed to be fixed across individuals. This assumption is likely to be violated (i.e., the model effects are random across individuals) in practice. When this happens, the CLPMs can potentially yield biased parameter estimates and misleading statistical inferences. This article proposes a model named a random-effects cross-lagged panel model (RE-CLPM) to account for random effects in CLPMs. Simulation studies show that the RE-CLPM outperforms the CLPM in recovering the mean indirect and direct effects in a longitudinal mediation analysis when random effects exist in the population. The performance of the RE-CLPM is robust to a certain degree, even when the random effects are not normally distributed. In addition, the RE-CLPM does not produce harmful results when the model effects are in fact fixed in the population. Implications of the simulation studies and potential directions for future research are discussed

    Efficient Estimation of Copula-based Semiparametric Markov Models

    Get PDF
    This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant (one-dimensional marginal) distributions and parametric bivariate copula functions; where the copulas capture temporal dependence and tail dependence of the processes. The Markov processes generated via tail dependent copulas may look highly persistent and are useful for financial and economic applications. We first show that Markov processes generated via Clayton, Gumbel and Student's tt copulas and their survival copulas are all geometrically ergodic. We then propose a sieve maximum likelihood estimation (MLE) for the copula parameter, the invariant distribution and the conditional quantiles. We show that the sieve MLEs of any smooth functionals are root-nn consistent, asymptotically normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square distributed. We present Monte Carlo studies to compare the finite sample performance of the sieve MLE, the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the incorrectly specified parametric MLE. The simulation results indicate that our sieve MLEs perform very well; having much smaller biases and smaller variances than the two-step estimator for Markov models generated via Clayton, Gumbel and other tail dependent copulas.Copula, Tail dependence, Nonlinear Markov models, Geometric ergodicity, Sieve MLE, Semiparametric efficiency, Sieve likelihood ratio statistics, Value-at-Risk

    Symmetry Reduction and Boundary Modes for Fe-Chains on an s-wave Superconductor

    Full text link
    We investigate the superconducting phase diagram and boundary modes for a quasi-1D system formed by three Fe-Chains on an s-wave superconductor, motivated by the recent Princeton experiment. The lāƒ—ā‹…sāƒ—\vec l\cdot\vec s onsite spin-orbit term, inter-chain diagonal hopping couplings, and magnetic disorders in the Fe-chains are shown to be crucial for the superconducting phases, which can be topologically trivial or nontrivial in different parameter regimes. For the topological regime a single Majorana and multiple Andreew bound modes are obtained in the ends of the chain, while for the trivial phase only low-energy Andreev bound states survive. Nontrivial symmetry reduction mechanism induced by the lāƒ—ā‹…sāƒ—\vec l\cdot\vec s term, diagonal hopping couplings, and magnetic disorder is uncovered to interpret the present results. Our study also implies that the zero-bias peak observed in the recent experiment may or may not reflect the Majorana zero modes in the end of the Fe-chains.Comment: 5 pages, 4 figures; some minor errors are correcte

    Towards a practice-as-research model of Performise: taking scenography for Antigone the Unbrave (2019) as a case study

    Get PDF
    This work was published in a book funded by national funds through FCT - FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia, I.P., within the project UIDB/04041/2020 (Centro de Estudos Arnaldo AraĆŗjo).info:eu-repo/semantics/publishedVersio

    Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures

    Full text link
    Hydrogen-rich compounds are important for understanding the dissociation of dense molecular hydrogen, as well as searching for room temperature Bardeen-Cooper-Schrieffer (BCS) superconductors. A recent high pressure experiment reported the successful synthesis of novel insulating lithium polyhydrides when above 130 GPa. However, the results are in sharp contrast to previous theoretical prediction by PBE functional that around this pressure range all lithium polyhydrides (LiHn (n = 2-8)) should be metallic. In order to address this discrepancy, we perform unbiased structure search with first principles calculation by including the van der Waals interaction that was ignored in previous prediction to predict the high pressure stable structures of LiHn (n = 2-11, 13) up to 200 GPa. We reproduce the previously predicted structures, and further find novel compositions that adopt more stable structures. The van der Waals functional (vdW-DF) significantly alters the relative stability of lithium polyhydrides, and predicts that the stable stoichiometries for the ground-state should be LiH2 and LiH9 at 130-170 GPa, and LiH2, LiH8 and LiH10 at 180-200 GPa. Accurate electronic structure calculation with GW approximation indicates that LiH, LiH2, LiH7, and LiH9 are insulative up to at least 208 GPa, and all other lithium polyhydrides are metallic. The calculated vibron frequencies of these insulating phases are also in accordance with the experimental infrared (IR) data. This reconciliation with the experimental observation suggests that LiH2, LiH7, and LiH9 are the possible candidates for lithium polyhydrides synthesized in that experiment. Our results reinstate the credibility of density functional theory in description H-rich compounds, and demonstrate the importance of considering van der Waals interaction in this class of materials.Comment: 34 pages, 15 figure
    • ā€¦
    corecore