2,814 research outputs found

    Unifying and Merging Well-trained Deep Neural Networks for Inference Stage

    Full text link
    We propose a novel method to merge convolutional neural-nets for the inference stage. Given two well-trained networks that may have different architectures that handle different tasks, our method aligns the layers of the original networks and merges them into a unified model by sharing the representative codes of weights. The shared weights are further re-trained to fine-tune the performance of the merged model. The proposed method effectively produces a compact model that may run original tasks simultaneously on resource-limited devices. As it preserves the general architectures and leverages the co-used weights of well-trained networks, a substantial training overhead can be reduced to shorten the system development time. Experimental results demonstrate a satisfactory performance and validate the effectiveness of the method.Comment: To appear in the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence, 2018. (IJCAI-ECAI 2018

    Weakly-supervised Caricature Face Parsing through Domain Adaptation

    Full text link
    A caricature is an artistic form of a person's picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .Comment: Accepted in ICIP 2019, code and model are available at https://github.com/ZJULearning/CariFaceParsin

    The Artificial Neural Networks Applied to Servo Control Systems

    Get PDF
    This chapter utilizes the direct neural control (DNC) based on back propagation neural networks (BPN) with specialized learning architecture applied to the speed control of DC servo motor. The proposed neural controller can be treated as a speed regulator to keep the motor in constant speed, and be applied to DC servo motor speed control. The proposed neural control applied to position control for hydraulic servo system is also studied for some modern robotic applications. A tangent hyperbolic function is used as the activation function, and the back propagation error is approximated by a linear combination of error and error!s differential. The simulation and experiment results reveal that the proposed neural controller is available to DC servo control system and hydraulic servo system with high convergent speed, and enhances the adaptability of the control system

    Analysis of double elastic steel wind driven magneto-electric vibration energy harvesting system

    Get PDF
    [[abstract]]This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.[[notice]]補正完
    • …
    corecore