60 research outputs found

    MicroRNA-155 Regulates MAIT1 and MAIT17 Cell Differentiation

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are innate-like T cells that develop in the thymus through three maturation stages to acquire effector function and differentiate into MAIT1 (T-bet(+)) and MAIT17 (RORγt(+)) subsets. Upon activation, MAIT cells release IFN-γ and IL-17, which modulate a broad spectrum of diseases. Recent studies indicate defective MAIT cell development in microRNA deficient mice, however, few individual miRNAs have been identified to regulate MAIT cells. MicroRNA-155 (miR-155) is a key regulator of numerous cellular processes that affect some immune cell development, but its role in MAIT cell development remains unclear. To address whether miR-155 is required for MAIT cell development, we performed gain-of-function and loss-of-function studies. We first generated a CD4Cre.miR-155 knock-in mouse model, in which miR-155 is over-expressed in the T cell lineage. We found that overexpression of miR-155 significantly reduced numbers and frequencies of MAIT cells in all immune organs and lungs and blocked thymic MAIT cell maturation through downregulating PLZF expression. Strikingly, upregulated miR-155 promoted MAIT1 differentiation and blocked MAIT17 differentiation, and timely inducible expression of miR-155 functionally inhibited peripheral MAIT cells secreting IL-17. miR-155 overexpression also increased CD4(-)CD8(+) subset and decreased CD4(-)CD8(-) subset of MAIT cells. We further analyzed MAIT cells in conventional miR-155 knockout mice and found that lack of miR-155 also promoted MAIT1 differentiation and blocked MAIT17 differentiation but without alteration of their overall frequency, maturation and function. Overall, our results indicate that adequate miR-155 expression is required for normal MAIT1 and MAIT17 cell development and function

    Potential Disease-Modifying Effects of Lithium Carbonate in Niemann-Pick Disease, Type C1

    Get PDF
    Background: Niemann-Pick disease type C1 (NP-C1) is a rare, autosomal-recessive neurodegenerative disorder with no United States Food and Drug Administration (FDA)-approved drug. Lithium has been shown to have considerable neuroprotective effects for neurological disorders such as bipolar disorder, Alzheimer’s disease and stroke and has been tested in many clinical trials. However, the pharmacological effect of lithium on NP-C1 neurodegenerative processes has not been investigated. The aim of this study was to provide an initial evaluation of the safety and feasibility of lithium carbonate in patients with NP-C1.Methods: A total of 13 patients diagnosed with NP-C1 who met the inclusion criteria received lithium orally at doses of 300, 600, 900, or 1,200 mg daily. The dose was reduced based on tolerance or safety observations. Plasma 7-ketocholesterol (7-KC), an emerging biomarker of NP-C1, was the primary endpoint. Secondary endpoints included NPC Neurological Severity Scores (NNSS) and safety.Results: Of the 13 patients with NP-C1 (12–33 years) enrolled, three withdrew (discontinuation of follow-up outpatient visits). The last observed post-treatment values of 7-KC concentrations (128 ng/ml, SEM 20) were significantly lower than pretreatment baselines values (185 ng/ml, SEM 29; p = 0.001). The mean NNSS was improved after lithium treatment at 12 months (p = 0.005). Improvement in swallowing capacity was observed in treated patients (p = 0.014). No serious adverse events were recorded in the patients receiving lithium.Conclusion: Lithium is a potential therapeutic option for NP-C1 patients. Larger randomized and double-blind clinical trials are needed to further support this finding.Clinical Trial Registration:ClinicalTrials.gov, NCT03201627

    UDTIRI: An Open-Source Road Pothole Detection Benchmark Suite

    Full text link
    It is seen that there is enormous potential to leverage powerful deep learning methods in the emerging field of urban digital twins. It is particularly in the area of intelligent road inspection where there is currently limited research and data available. To facilitate progress in this field, we have developed a well-labeled road pothole dataset named Urban Digital Twins Intelligent Road Inspection (UDTIRI) dataset. We hope this dataset will enable the use of powerful deep learning methods in urban road inspection, providing algorithms with a more comprehensive understanding of the scene and maximizing their potential. Our dataset comprises 1000 images of potholes, captured in various scenarios with different lighting and humidity conditions. Our intention is to employ this dataset for object detection, semantic segmentation, and instance segmentation tasks. Our team has devoted significant effort to conducting a detailed statistical analysis, and benchmarking a selection of representative algorithms from recent years. We also provide a multi-task platform for researchers to fully exploit the performance of various algorithms with the support of UDTIRI dataset.Comment: Database webpage: https://www.udtiri.com/, Kaggle webpage: https://www.kaggle.com/datasets/jiahangli617/udtir

    C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart.

    Get PDF
    BACKGROUND: Obesity and diabetes mellitus adversely affect postischemic heart remodeling via incompletely understood mechanisms. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine exerting beneficial metabolic regulation, similar to adiponectin. The aim of the present study was to determine whether CTRP3 may regulate postischemic cardiac remodeling and cardiac dysfunction, and, if so, to elucidate the underlying mechanisms. METHODS AND RESULTS: Male adult mice were subjected to myocardial infarction (MI) via left anterior descending coronary artery occlusion. Both the effect of MI on endogenous CTRP3 expression/production and the effect of exogenous CTRP3 (adenovirus or recombinant CTRP3) replenishment on MI injury were investigated. MI significantly inhibited adipocyte CTRP3 expression and reduced the plasma CTRP3 level, reaching a nadir 3 days after MI. CTRP3 replenishment improved survival rate (P CONCLUSION: CTRP3 is a novel antiapoptotic, proangiogenic, and cardioprotective adipokine, the expression of which is significantly inhibited after MI

    Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms.

    Get PDF
    Diabetes exacerbates ischemic heart disease morbidity and mortality via incompletely understood mechanisms. Although adiponectin (APN) reduces myocardial ischemia/reperfusion (MI/R) injury in nondiabetic animals, whether APN\u27s cardioprotective actions are altered in diabetes, a pathologic condition with endogenously reduced APN, has never been investigated. High-fat diet (HD)-induced diabetic mice and normal diet (ND) controls were subjected to MI via coronary artery ligation, and given vehicle or APN globular domain (gAPN, 2 μg/g) 10 min before reperfusion. Compared to ND mice (where gAPN exerted pronounced cardioprotection), HD mice manifested greater MI/R injury, and a tripled gAPN dose was requisite to achieve cardioprotective extent seen in ND mice (i.e., infarct size, apoptosis, and cardiac function). APN reduces MI/R injury via AMP-activated protein kinase (AMPK)-dependent metabolic regulation and AMPK-independent antioxidative/antinitrative pathways. Compared to ND, HD mice manifested significantly blunted gAPN-induced AMPK activation, basally and after MI/R (p\u3c0.05). Although both low- and high-dose gAPN equally attenuated MI/R-induced oxidative stress (i.e., NADPH oxidase expression and superoxide production) and nitrative stress (i.e., inducible nitric oxide synthase expression, nitric oxide production, and peroxynitrite formation) in ND mice, only high-dose gAPN efficaciously did so in HD mice. We demonstrate for the first time that HD-induced diabetes diminished both AMPK-dependent and AMPK-independent APN cardioprotection, suggesting an unreported diabetic heart APN resistance

    Brief Report: Long‐Term Functional Engraftment of Mesenchymal Progenitor Cells in a Mouse Model of Accelerated Aging

    Full text link
    Age‐related osteoporosis is characterized by a decrease in bone‐forming capacity mediated by defects in the number and function of osteoblasts. An important cellular mechanism that may in part explain osteoblast dysfunction that occurs with aging is senescence of mesenchymal progenitor cells (MPCs). In the telomere‐based Wrn −/− Terc −/− model of accelerated aging, the osteoporotic phenotype of these mice is also associated with a major decline in MPC differentiation into osteoblasts. To investigate the role of MPC aging as a cell‐autonomous mechanism in senile bone loss, transplantation of young wild‐type whole bone marrow into Wrn −/− Terc −/− mutants was performed and the ability of engrafted cells to differentiate into cells of the osteoblast lineage was assessed. We found that whole bone marrow transplantation in Wrn −/− Terc −/− mice resulted in functional engraftment of MPCs up to 42 weeks, which was accompanied by a survival advantage as well as delays in microarchitectural features of skeletal aging. S TEM C ELLS 2013;31:607–611Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96667/1/sc-12-0760_sm_SupplFigure1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96667/2/1294_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96667/3/sc-12-0760_sm_SupplFigure2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96667/4/sc-12-0760_sm_SupplFigure3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96667/5/sc-12-0760_sm_SupplInform.pd

    Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment

    Get PDF
    Unlike conventional αβT cells, invariant natural killer T (iNKT) cells complete their terminal differentiation to functional iNKT1/2/17 cells in the thymus. However, underlying molecular programs that guide iNKT subset differentiation remain unclear. Here, we profiled the transcriptomes of over 17,000 iNKT cells and the chromatin accessibility states of over 39,000 iNKT cells across four thymic iNKT developmental stages using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to define their developmental trajectories. Our study discovered novel features for iNKT precursors and different iNKT subsets and indicated that iNKT2 and iNKT17 lineage commitment may occur as early as stage 0 (ST0) by two distinct programs, while iNKT1 commitments may occur post ST0. Both iNKT1 and iNKT2 cells exhibit extensive phenotypic and functional heterogeneity, while iNKT17 cells are relatively homogenous. Furthermore, we identified that a novel transcription factor, Cbfβ, was highly expressed in iNKT progenitor commitment checkpoint, which showed a similar expression trajectory with other known transcription factors for iNKT cells development, Zbtb16 and Egr2, and could direct iNKT cells fate and drive their effector phenotype differentiation. Conditional deletion of Cbfβ blocked early iNKT cell development and led to severe impairment of iNKT1/2/17 cell differentiation. Overall, our findings uncovered distinct iNKT developmental programs as well as their cellular heterogeneity, and identified a novel transcription factor Cbfβ as a key regulator for early iNKT cell commitment

    Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes

    Get PDF
    Infection of human peripheral blood cells by SARS-CoV-2 has been debated because immune cells lack mRNA expression of both angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease type 2 (TMPRSS2). Herein we demonstrate that resting primary monocytes harbor abundant cytoplasmic ACE2 and TMPRSS2 protein and that circulating exosomes contain significant ACE2 protein. Upon ex vivo TLR4/7/8 stimulation, cytoplasmic ACE2 was quickly translocated to the monocyte cell surface independently of ACE2 transcription, while TMPRSS2 surface translocation occurred in conjunction with elevated mRNA expression. The rapid translocation of ACE2 to the monocyte cell surface was blocked by the endosomal trafficking inhibitor endosidin 2, suggesting that endosomal ACE2 could be derived from circulating ACE2-containing exosomes. TLR-stimulated monocytes concurrently expressing ACE2 and TMPRSS2 on the cell surface were efficiently infected by SARS-CoV-2, which was significantly mitigated by remdesivir, TMPRSS2 inhibitor camostat, and anti-ACE2 antibody. Mass cytometry showed that ACE2 surface translocation in peripheral myeloid cells from patients with severe COVID-19 correlated with its hyperactivation and PD-L1 expression. Collectively, TLR4/7/8-induced ACE2 translocation with TMPRSS2 expression makes circulating monocytes permissive to SARS-CoV-2 infection

    Transcatheter Versus Surgical Closure of Perimembranous Ventricular Septal Defects in Children A Randomized Controlled Trial

    Get PDF
    ObjectivesThe objective of this study was to evaluate the safety and efficacy of the surgical versus transcatheter approach to correct perimembranous ventricular septal defects (pmVSDs) in a prospective, randomized, controlled clinical trial.BackgroundpmVSD is a common congenital heart disease in children. Surgical closure of pmVSD is a well-established therapy but requires open-heart surgery with cardiopulmonary bypass. Although the transcatheter approach is associated with significant incidence of complete atrioventricular block, it may provide a less invasive alternative. Critical comparison of the safety and efficacy of the 2 interventions necessitates a prospective, randomized, controlled trial.MethodsBetween January 2009 and July 2010, 229 children with pmVSD were randomly assigned to surgical or transcatheter intervention. Clinical, laboratory, procedural, and follow-up data over a 2-year period were compared.ResultsNeither group had mortality or major complications. However, statistical analysis of the 2 groups demonstrated significant differences (p < 0.001) in minor adverse events (32 vs. 7), quantity of blood transfused, duration of the procedure, median hospital stay, median intensive care unit stay, median hospitalization cost, and median blood loss. During a median follow-up of 2 years, the left ventricular end-diastolic dimension of both groups returned to normal and there was no difference in closure rate, adverse events, and complications between groups.ConclusionsTranscatheter device closure and surgical repair are effective interventions with excellent midterm results for treating pmVSD in children. Transcatheter device closure has a lower incidence of myocardial injury, less blood transfused, faster recovery, shorter hospital stay, and lower medical expenses. (Transcatheter Closure Versus Surgery of Perimembranous Ventricular Septal Defects; NCT00890799

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure
    corecore