7 research outputs found

    BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality

    Get PDF
    An urban climate analysis system for Seoul was combined with biometeorological models for the spatially distributed assessment of heat stress risks. The Biometeorological Climate impact Assessment System (BioCAS) is based on the Climate Analysis Seoul (CAS) workbench which provides urban planners with gridded data relevant for local climate assessment at 25 m and 5 m spatial resolutions. The influence of building morphology and vegetation on mean radiant temperature Tmrt was simulated by the SOLWEIG model. Gridded hourly perceived temperature PT was computed using the Klima-Michel Model for a hot day in 2012. Daily maximum perceived temperature PTmax was then derived from these data and applied to an empirical-statistical model that explains the relationship between PTmax and excess mortality rate rEM in Seoul. The resultant rEM map quantifies the detrimental impact of hot weather at the building scale. Mean (maximum) values of rEM in old and new town areas in an urban re-development site in Seoul were estimated at 2.3 % (50.7 %) and 0 % (8.6 %), respectively, indicating that urban re-development in the new town area has generally resulted in a strong reduction of heat-stress related mortality. The study illustrates that BioCAS can generally be applied for the quantification of the impacts of hot weather on human health for different urban development scenarios. Further improvements are required, particularly to consider indoor climate conditions causing heat stress, as well as socio-economic status and population structure of local residents

    Study on Radiative Flux of Road Resolution during Winter Based on Local Weather and Topography

    No full text
    Large-scale traffic accidents caused by black ice on roads have increased rapidly; hence, there is an urgent need to prepare safety measures for their prevention. Here, we used local weather road observations and the linkage between weather prediction and a radiation flux model (LDAPS-SOLWEIG) to calculate prediction information regarding habitual shade areas, sky view factor (SVF), and downward shortwave radiative flux by road direction and lane. Using the LDAPS-SOLWEIG model system, a set of real-time weather prediction data (temperature, humidity, wind speed, and insolation at 1.5 km resolution) was applied, and 5 m resolution radiative flux prediction data, with road resolution blocked by local weather and topography, were calculated. We found that the habitual shaded area can be divided by the direction and lane of the road according to the height and shape of the terrain around the road. The downward shortwave radiation flux data from local meteorological observation data and that calculated from the LDAPS-SOLWEIG model system were compared. When road-freezing occurred on a case day, the RMSE was 20.41 W·m−2, MB was −5.04 W·m−2, and r was 0.78. The calculated information, habitual shaded area, and SVF can highlight road sections vulnerable to winter freezing and can be helpful in the special management of these areas

    Development of an Urban High-Resolution Air Temperature Forecast System for Local Weather Information Services Based on Statistical Downscaling

    No full text
    The Korean peninsula has complex and diverse weather phenomena, and the Korea Meteorological Administration has been working on various numerical models to produce better forecasting data. The Unified Model Local Data Assimilation and Prediction System is a limited-area working model with a horizontal resolution of 1.5 km for estimating local-scale weather forecasts on the Korean peninsula. However, in order to numerically predict the detailed temperature characteristics of the urban space, in which surface characteristics change rapidly in a small spatial area, a city temperature prediction model with higher resolution spatial decomposition capabilities is required. As an alternative to this, a building-scale temperature model was developed, and a 25 m air temperature resolution was determined for the Seoul area. The spatial information was processed using statistical methods, such as linear regression models and machine learning. By comparing the accuracy of the estimated air temperatures with observational data during the summer, the machine learning was improved. In addition, horizontal and vertical characteristics of the urban space were better represented, and the air temperature was better resolved spatially. Air temperature information can be used to manage the response to heat-waves and tropical nights in administrative districts of urban areas

    Study on Radiative Flux of Road Resolution during Winter Based on Local Weather and Topography

    No full text
    Large-scale traffic accidents caused by black ice on roads have increased rapidly; hence, there is an urgent need to prepare safety measures for their prevention. Here, we used local weather road observations and the linkage between weather prediction and a radiation flux model (LDAPS-SOLWEIG) to calculate prediction information regarding habitual shade areas, sky view factor (SVF), and downward shortwave radiative flux by road direction and lane. Using the LDAPS-SOLWEIG model system, a set of real-time weather prediction data (temperature, humidity, wind speed, and insolation at 1.5 km resolution) was applied, and 5 m resolution radiative flux prediction data, with road resolution blocked by local weather and topography, were calculated. We found that the habitual shaded area can be divided by the direction and lane of the road according to the height and shape of the terrain around the road. The downward shortwave radiation flux data from local meteorological observation data and that calculated from the LDAPS-SOLWEIG model system were compared. When road-freezing occurred on a case day, the RMSE was 20.41 W·m−2, MB was −5.04 W·m−2, and r was 0.78. The calculated information, habitual shaded area, and SVF can highlight road sections vulnerable to winter freezing and can be helpful in the special management of these areas

    Estimation of Perceived Temperature of Road Workers Using Radiation and Meteorological Observation Data

    No full text
    During summer heat waves, road workers are easily exposed to heat stress and faced with a high risk of thermal diseases and death, and thus preventive measures are required for their safety at the work site. To prepare response measures, it is necessary to estimate workers’ perceived temperature (PT) according to exposure time, road environment, clothing type, and work intensity. This study aimed to examine radiation (short-wave radiation and long-wave radiation) and other meteorological factors (temperature, humidity, and wind) in an actual highway work environment in summer and to estimate PT using the observation data. Analysis of radiation and meteorological factors on the road according to pavement type and weather revealed that more heat was released from asphalt than from concrete. Regression model analysis indicated that compared with young workers (aged 25–30 years), older workers (aged ≄ 60 years) showed a rapid increase in PT as the temperature increased. The temperatures that people actually feel on concrete and asphalt roads in heat wave conditions can be predicted using the PT values calculated by the regression models. Our findings can serve as a basis for measures to prevent workers from thermal diseases at actual road work sites

    Lower Serum Calcium Levels Associated with Disrupted Sleep and Rest-Activity Rhythm in Shift Workers

    No full text
    Vitamin D deficiency is prevalent in many developed countries, and several studies suggest that vitamin D plays an essential role in brain function. A recent study showed that vitamin D deficiency was closely associated with daytime sleepiness and shorter sleep time. The relationshipbetween vitamin D levels and calcium levels is well established, and calcium level regulates slow-wave sleep generation. It is conceivable that the sleep disturbance in vitamin D deficiency may be due to an altered calcium level. Nonetheless, calcium levels, sleep disturbances, and activity rhythms have not been investigated directly. Therefore, we hypothesized that calcium and vitamin D levels might be important in regulating sleep and activity rhythm, and we analyzed the correlation with calcium levels by actigraphy analysis. Interestingly, a negative correlation was found between calcium level and sleep latency, total sleep time, use of sleep medicine, and daytime dysfunction among shift workers. In contrast, non-shift workers showed a negative correlation between the calcium level and the circadian phase. These findings suggest that low serum calcium levels may disrupt sleep-wake control and rest-activity rhythm, even if they are within the normal range.N

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore