20 research outputs found

    Effects of duration of long-acting GnRH agonist downregulation on assisted reproductive technology outcomes in patients with adenomyosis: a retrospective cohort study

    Get PDF
    ObjectivesTo elucidate the relationship between long-acting GnRH agonist (GnRHa) downregulation and assisted reproductive technology (ART) outcomes and identify the optimal duration of downregulation in patients with adenomyosis.DesignRetrospective cohort study.ParticipantsThe study was designed to evaluate ART outcomes in adenomyosis patients with and without GnRHa downregulation between January 2016 and December 2020. A total of 374 patients with adenomyosis (621 cycles) were included with 281 cycles in downregulation group versus 340 cycles in non-downregulation group. After 1:1 propensity score matching (PSM), a sample size of 272 cycles in each group was matched. The matched downregulation group was further divided into 1-month (147 cycles), 2-months (72 cycles), and ≥3 months downregulation (53 cycles) subgroups. Stratification analysis was conducted on pregnancy outcomes in 239 fresh embryo transfer (ET) cycles and 305 frozen embryo transfer (FET) cycles.ResultsThe downregulation group had larger mean diameter of initial uterus and higher proportion of severer dysmenorrhea compared to non-downregulation group. The pregnancy-related parameters in GnRHa downregulation group were similar to those in non-downregulation group, except for higher late miscarriage rate (MR) (13.4% vs. 3.1%, P = 0.003). The subgroup comparisons in fresh ET cycles indicated that implantation rate (75.0% vs. 39.2%, P = 0.002), biochemical pregnancy rate (91.7% vs. 56.0%, P = 0.036) and clinical pregnancy rate (83.3% vs. 47.0%, P = 0.016) could be improved by prolonged GnRHa downregulation (≥3 months), whereas late MR was difficult to be reversed (30.0% vs. 3.2%, P = 0.017). In FET cycles, higher MR (53.6% vs. 29.9%, P = 0.029; 58.8% vs. 29.9%, P = 0.026) and lower live birth rate (18.8% vs. 34.1%, P = 0.023; 17.1% vs. 34.1%, P = 0.037) were observed in the 1-month and ≥3 months downregulation group, while no differences were found in the 2-months downregulation group compared to the non-downregulation group.ConclusionIn patients with severer adenomyosis, long-acting GnRHa downregulation might be correlated with improved ART outcomes. In fresh ET cycles, prolonged downregulation (≥3 months) might be beneficial to improve live birth rate, which needed to be verified by further study with larger sample. In FET cycles, the optimal duration of downregulation was not certain and still needed further exploration

    Effects of ovarian stimulation protocols on outcomes of assisted reproductive technology in adenomyosis women: a retrospective cohort study

    Get PDF
    ObjectiveTo evaluate the effects of different ovarian stimulation protocols on in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes in infertile women with adenomyosis.MethodsWe carried out a retrospective cohort study among infertile women with adenomyosis receiving IVF/ICSI treatment, including 257 fresh embryo transfer (ET) cycles and 305 frozen embryo transfer (FET) cycles. In fresh ET cycles, ultra-long, long, short, and antagonist protocols were adopted. In FET cycles, patients received long-acting GnRH agonist (GnRHa) pretreatment or not. The primary outcome was clinical pregnancy rate (CPR), and the secondary outcomes included implantation rate (IR), miscarriage rate (MR), and live birth rate (LBR).ResultsIn fresh ET cycles, compared with ultra-long and long protocols, IR (49.7%, 52.1% versus 28.2%, P=0.001) and CPR (64.3%, 57.4% versus 35.6%, P=0.004) significantly decreased in the short protocol. Similarly, compared with ultra-long and long protocols, a decreased inclination of IR (49.7%, 52.1% versus 33.3%) and CPR (57.4%, 64.3% versus 38.2%) existed in the antagonist protocol, although no statistical significance was detected because of strict P adjustment of Bonferroni method (Padj=0.008). Compared with long protocol, LBR in short protocol decreased obviously (48.2% versus 20.3%, P<0.001). In FET cycles, no matter which origin of embryos, there were no statistical differences in IR, CPR, and LBR. For women ≥35 years receiving fresh ET, CPR was higher in ultra-long and long protocols (52.1%, 50.0% versus 20.0%, 27.5%, P=0.031) compared to antagonist and short protocols. For women ≥35 years receiving FET, compared with ultra-long and antagonist protocols, cycles with embryos originating from long and short protocols had higher proportions of long-acting GnRHa pretreatment (30.4%,30.00 versus 63.9%, 51.4%, P=0.009). IR (61.1%, 48.6% versus 32.6%, 25.0%, P=0.020) and CPR (58.3%, 48.6% versus 30.4%, 25.0%, P=0.024) in long and short protocols were higher than rates of ultra-long and antagonist protocols, but no statistical differences were supported because of strict Bonferroni method (Padj=0.008).ConclusionIn infertile women with adenomyosis, if a fresh embryo was planned for transfer, an ultra-long or long protocol might be beneficial. If antagonist and short protocols were used, whole embryos frozen followed by FET was recommended. In FET cycles, embryos derived from different protocols had no impact on pregnancy outcomes

    Crystal Structure of the Caenorhabditis elegans Apoptosome Reveals an Octameric Assembly of CED-4

    Get PDF
    SummaryThe CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA+ ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA+ ATPases and suggests a mechanism for the activation of CED-3

    An External Archive Guided Multiobjective Evolutionary Algorithm Based on Decomposition for Combinatorial Optimization

    No full text
    Domination-based sorting and decomposition are two basic strategies used in multiobjective evolutionary optimization. This paper proposes a hybrid multiobjective evolutionary algorithm integrating these two different strategies for combinatorial optimization problems with two or three objectives. The proposed algorithm works with an internal (working) population and an external archive. It uses a decomposition-based strategy for evolving its working population and uses a domination-based sorting for maintaining the external archive. Information extracted from the external archive is used to decide which search regions should be searched at each generation. In such a way, the domination-based sorting and the decomposition strategy can complement each other. In our experimental studies, the proposed algorithm is compared with a domination-based approach, a decomposition-based one, and one of its enhanced variants on two well-known multiobjective combinatorial optimization problems. Experimental results show that our proposed algorithm outperforms other approaches. The effects of the external archive in the proposed algorithm are also investigated and discussed

    An external archive guided multiobjective evolutionary approach based on decomposition for continuous optimization

    No full text
    In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive

    Systematical assessment of digit ratio in a female masculinization disease: polycystic ovary syndrome

    Get PDF
    BackgroundIn recent years, the right ratio of 2nd and 4th digit length (2D:4D) is regarded as an anatomical marker of prenatal testosterone exposure. Polycystic ovary syndrome (PCOS) is a female masculinized disease and is determined by prenatal testosterone exposure. Whether the ratio in the right hand of PCOS women is reduced or not compared with non-PCOS women is under debate. To further investigate the relationship between PCOS and digit ratio, we systematically measured all the digit ratios.MethodsWe recruited 34 non-PCOS women, 116 PCOS women, and 40 men and systematically measured all the ratios of digit length (2D:3D, 2D:4D, 2D:5D, 3D:4D, 3D:5D, and 4D:5D) of right hands and left hands.ResultsLeft 2D:3D, 2D:4D, and 2D:5D in men were significantly lower than those in non-PCOS women. Significantly lower digit ratios of left 2D:3D and 2D:4D were observed in PCOS compared with non-PCOS women. In the subgroup analysis, the left ratio of digit length in 2D:3D and 2D:5D of the hyperandrogenism subgroup was lower than that of the non-hyperandrogenism subgroup without statistical significance. The logistic regression model of PCOS revealed that 2D:3D, 2D:4D, 2D:5D, and 3D:4D of left hands were statistically related to the diagnosis of PCOS among all the digit ratios.ConclusionNot only 2D:4D but also other digit ratios, such as 2D:3D and 2D:5D, are a marker of prenatal testosterone exposure and may be an anatomical marker of PCOS. The majority of these significant differences included left 2D, with the following order: non-PCOS women > PCOS women > men

    Research on the Status Quo and Countermeasures of Modern Agriculture Development in Dazhou City

    No full text
    Developing modern agriculture, promoting the transformation and upgrading of agriculture, and improving the comprehensive benefits of agriculture are important targets for winning the fight against poverty and the inherent requirements and key links for implementing the rural revitalization strategy. As a large agricultural city in northeastern Sichuan, Dazhou City is facing a crucial period of transition from traditional agriculture to modern agriculture. This paper mainly analyzes the status quo of modern agriculture development in Dazhou and the main constraints it faces, and puts forward reasonable suggestions to provide reference for modern agricultural development in Dazhou

    Data from: Foraging responses of sheep to plant spatial micro-patterns can cause diverse associational effects of focal plant at individual and population levels

    No full text
    1. Multiple-scale foraging decisions by large herbivores can cause associational effects of focal plant individuals neighbored with different species. Spatial micro-patterns between the focal plant and its neighboring species within patches can affect herbivore foraging selectivity at within- and between-patch scale, which may consequently lead to associational plant effects occurring at both plant individual and population levels. However, these associational effects have not been explored together in the plant-herbivore interaction studies. 2. We aim to evaluate how plant spatial micro-pattern within different quality patches mediate herbivore foraging selectivity, thereby affecting the associational effects of focal plant individuals and population. 3. Using sheep as the model herbivore and a medium preferred species as the focal plant, we conducted a manipulative experiment by allowing sheep grazing freely among three different quality patches, each of which consisted of preferred, un-preferred and focal plant species with different abundances forming spatially aggregated or dispersed micro-patterns. 4. Results showed that, compared with the aggregated plant micro-pattern, dispersed plant micro-patterns within different quality patches increased sheep within-patch selectivity, and caused diverse associational effects of focal plant individuals. Focal plant individuals experienced neighbor contrast defense (i.e. got protection in the high quality patch) and associational defense (i.e. got protection in the low quality patch), respectively, when plants dispersedly distributed in the low and high quality patch. Focal plant individuals simultaneously experienced associational susceptibility (i.e. got damage in the high quality patch) and neighbor contrast susceptibility (i.e. got damage in the low quality patch) when plants dispersedly distributed in the medium quality patch. Furthermore, dispersed plant micro-patterns reduced sheep foraging selectivity between patches, and led to a lower consumption of focal plant population compared with the aggregated plant micro-pattern. 5. Herbivore adopt different within- and between-patch foraging decisions to maintain a high intake of the preferred species in response to various plant micro-patterns, and consequently cause diverse associational effects of both focal plant individuals and population. These associational effects have important implications for understanding the species coexistence and plant community assembly in the grazing ecosystems

    A High Capacity and High-Rate Anode Material for Lithium-Ion Batteries Based on Bimetallic CoNi-MOFs

    No full text
    Metal-organic frameworks (MOFs) with a high porosity and high specific surface area are widely used as anode materials in Li-ions batteries. Herein, we synthesized bimetallic CoNi-MOFs with a general solvothermal method, and the obtained CoNi-MOFs show alamellar bulk structure. The CoNi-MOFs exhibit a remarkable electrochemical performance, with a high reversible capacity up to 1120 mAhg-1 after 200 cycles performed at a current density of 500 mA g-1 and an excellent rate performance, which is ascribed to the variable-valence metal ions and redox-active ligands. We employed a suite of measurements, including X-ray photoelectron spectroscopy (XPS), X-ray adsorption fine structure (XAFS) measurements, and scanning electron microscopy (SEM).The SEM images show that the morphology of the electrode changes as the electrode is charged and discharged during cycling.We found that the transition metals Co and Ni are in high valence states during charging. However, the XAS and XPS results suggest that Ni2+ and Co2+ are induced to Ni0 and Co0during discharging. This evidence is conducive to exploring the intrinsic mechanism of Li insertion/extraction and understanding the electrochemical behaviors. We optimized the material design and performed a more in-depth study of the mechanism used to make the MOF materials better to meet the high power/energy density requirement of lithium-ion batteries (LIBs).</p
    corecore