23 research outputs found

    Cold denaturation of RNA secondary structures with loop entropy and quenched disorder

    Get PDF
    The critical behavior of ribonucleic acid (RNA) secondary structures with quenched sequence randomness is studied by means of the constrained annealing method. A thermodynamic phase transition is induced by including the conformational weight of loop structures. In addition to the expected melting at high temperature, a cold-melting transition appears when the disorder strength induces competition between favorable and unfavorable base pairs. Our results suggest that the cold denaturation of RNA found experimentally might be triggered by quenched sequence disorder. We calculate hot- and cold-melting critical temperatures for competing favorable and unfavorable base-pair energies and present a folding phase diagram as a function of the loop exponent and temperature

    Osmotic pressure induced coupling between cooperativity and stability of a helix-coil transition

    Full text link
    Most helix-coil transition theories can be characterized by a set of three parameters: energetic, describing the (free) energy cost of forming a helical state in one repeating unit; entropic, accounting for the decrease of entropy due to the helical state formation; and geometric, indicating how many repeating units are affected by the formation of one helical state. Depending on their effect on the helix-coil transition, solvents or co-solutes can be classified with respect to their action on these parameters. Solvent interactions that alter the entropic cost of helix formation by their osmotic action can affect both the stability (transition temperature) and the cooperativity (transition interval) of the helix-coil transition. A consistent inclusion of osmotic pressure effects in a description of helix-coil transition for poly(L-glutamic acid) in solution with polyethylene glycol can offer an explanation of the experimentally observed linear dependence of transition temperature on osmotic pressure as well as the concurrent changes in the cooperativity of the transition.Comment: 5 pages, 3 figures. To be submitted to Phys.Rev.Let

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure

    Modelling DNA adsorption on CNT

    No full text
    Due to the attraction between the polycyclic aromatic surface elements of carbon nanotubes (CNT) and the aromatic nucleotides of deoxyribonucleic acid (DNA) a reversible adsorption (physisorption) between them takes place. A large number of technologies are based on DNA-CNT hybrids [1], and thus require the theoretical support. Modelling this phenomenon in terms of Statistical Mechanics became recently possible, thanks to the Hamiltonian formulation of the zipper model [2]

    Kinetics of the long ssRNA: Steady state

    No full text
    The steady state in the kinetic pathways of the long single-strand RNA (ssRNA) in the approximation of a coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary-structure rearrangement is much longer than that for the formation of the tertiary structure. The entropy and the specific heat of the system as functions of the temperature are calculated and plotted. A non-equilibrium phase transition of the 2nd order has been observed. The possible biological implication of the obtained results is discussed
    corecore