6,343 research outputs found

    Tracing the Evolution of Physics on the Backbone of Citation Networks

    Get PDF
    Many innovations are inspired by past ideas in a non-trivial way. Tracing these origins and identifying scientific branches is crucial for research inspirations. In this paper, we use citation relations to identify the descendant chart, i.e. the family tree of research papers. Unlike other spanning trees which focus on cost or distance minimization, we make use of the nature of citations and identify the most important parent for each publication, leading to a tree-like backbone of the citation network. Measures are introduced to validate the backbone as the descendant chart. We show that citation backbones can well characterize the hierarchical and fractal structure of scientific development, and lead to accurate classification of fields and sub-fields.Comment: 6 pages, 5 figure

    Autonomous frequency domain identification: Theory and experiment

    Get PDF
    The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability

    Real-time marker-less multi-person 3D pose estimation in RGB-Depth camera networks

    Get PDF
    This paper proposes a novel system to estimate and track the 3D poses of multiple persons in calibrated RGB-Depth camera networks. The multi-view 3D pose of each person is computed by a central node which receives the single-view outcomes from each camera of the network. Each single-view outcome is computed by using a CNN for 2D pose estimation and extending the resulting skeletons to 3D by means of the sensor depth. The proposed system is marker-less, multi-person, independent of background and does not make any assumption on people appearance and initial pose. The system provides real-time outcomes, thus being perfectly suited for applications requiring user interaction. Experimental results show the effectiveness of this work with respect to a baseline multi-view approach in different scenarios. To foster research and applications based on this work, we released the source code in OpenPTrack, an open source project for RGB-D people tracking.Comment: Submitted to the 2018 IEEE International Conference on Robotics and Automatio

    Measurement of Lagrangian velocity in fully developed turbulence

    Full text link
    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ=740R_{\lambda} = 740. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form EL(ω)=urms2TL/(1+(TLω)2)E^{L}(\omega) = u_{rms}^{2} T_{L} / (1 + (T_{L}\omega)^{2}), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR

    Spontaneous phase oscillation induced by inertia and time delay

    Full text link
    We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is examined; revealed in numerical simulations is emergence of spontaneous phase oscillation without external driving, which turns out to be in good agreement with analytical results derived in the strong-coupling limit. Such self-oscillation is found to suppress synchronization and its frequency is observed to decrease with inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appropriate regions of the parameters.Comment: 5 pages, 6 figures, to pe published in PR

    Optimal Resource Allocation in Random Networks with Transportation Bandwidths

    Full text link
    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwell's construction.Comment: 28 pages, 11 figure

    Corrosion products and mechanism on NiTi shape memory alloy in physiological environment

    Get PDF
    Despite many investigations on the corrosion behavior of NiTi shape memory alloys (SMAs) in various simulated physiological solutions by electrochemical measurements, few have reported detailed information on the corrosion products. In the present study, the structure and composition of the corrosion products on NiTi SMAs immersed in a 0.9% NaCl physiological solution are systematically investigated by scanning electron microscopy (SEM), x-ray energy dispersion spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS). It is found that attack by Cl - results in nickel being released into the solution and decrease in the local nickel concentration at the pitting sites. The remaining Ti reacts with dissolved oxygen from the solution to form titanium oxides. After longterm immersion, the corrosion product layer expands over the entire surface and XPS reveals that the layer is composed of TiO 2, Ti 2O3, and TiO with relatively depleted Ni. The growth rate of the corrosion product layer decreases with immersion time, and the corrosion product layer is believed to impede further corrosion and improve the biocompatibility of NiTi alloy in a physiological environment. It is found that the release rate of nickel is related to the surface structure of the corrosion product layer and immersion time. A corrosion mechanism is proposed to explain the observed results. © 2010 Materials Research Society.published_or_final_versio
    corecore