4,676 research outputs found
Temporal Effects of Agent Aggregation in the Dynamics of Multiagent Systems
We propose a model of multiagent systems whose agents have a tendency to
balance their decisions in time. We find phase transitions to oscillatory
behavior, explainable by the aggregation of agents into two groups. On a longer
time scale, we find that the aggregation of smart agents is able to explain the
lifetime distribution of epochs to 8 decades of probability.Comment: 7 pages, 5 figure
Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope
We report the results from a detailed ray investigation in the field
of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with years
of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we
found that its MeV-GeV emission is mainly originated from the "Region A" of the
TeV feature. Its ray spectrum can be modeled with a single power-law
with a photon index of from few hundreds MeV to TeV. Moreover,
an elongated feature, which extends from "Region A" toward northwest for
, is discovered for the first time. The orientation of this
feature is similar to that of a large scale atomic/molecular gas distribution.
For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for
this unidentified TeV source. On the other hand, we have detected a new point
source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved
which resembles that of a ray pulsar. This makes it possibly
associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA
A monte-carlo floating-point unit for self-validating arithmetic
Monte-Carlo arithmetic is a form of self-validating arith-metic that accounts for the effect of rounding errors. We have implemented a floating point unit that can perform ei-ther IEEE 754 or Monte-Carlo floating point computation, allowing hardware accelerated validation of results during execution. Experiments show that our approach has a mod-est hardware overhead and allows the propagation of round-ing error to be accurately estimated
Optimal Location of Sources in Transportation Networks
We consider the problem of optimizing the locations of source nodes in
transportation networks. A reduction of the fraction of surplus nodes induces a
glassy transition. In contrast to most constraint satisfaction problems
involving discrete variables, our problem involves continuous variables which
lead to cavity fields in the form of functions. The one-step replica symmetry
breaking (1RSB) solution involves solving a stable distribution of functionals,
which is in general infeasible. In this paper, we obtain small closed sets of
functional cavity fields and demonstrate how functional recursions are
converted to simple recursions of probabilities, which make the 1RSB solution
feasible. The physical results in the replica symmetric (RS) and the 1RSB
frameworks are thus derived and the stability of the RS and 1RSB solutions are
examined.Comment: 38 pages, 18 figure
Spinodal Decomposition and the Tomita Sum Rule
The scaling properties of a phase-ordering system with a conserved order
parameter are studied. The theory developed leads to scaling functions
satisfying certain general properties including the Tomita sum rule. The theory
also gives good agreement with numerical results for the order parameter
scaling function in three dimensions. The values of the associated
nonequilibrium decay exponents are given by the known lower bounds.Comment: 15 pages, 6 figure
Evolution of speckle during spinodal decomposition
Time-dependent properties of the speckled intensity patterns created by
scattering coherent radiation from materials undergoing spinodal decomposition
are investigated by numerical integration of the Cahn-Hilliard-Cook equation.
For binary systems which obey a local conservation law, the characteristic
domain size is known to grow in time as with n=1/3,
where B is a constant. The intensities of individual speckles are found to be
nonstationary, persistent time series. The two-time intensity covariance at
wave vector can be collapsed onto a scaling function , where and . Both analytically and numerically, the covariance
is found to depend on only through in the
small- limit and in the large-
limit, consistent with a simple theory of moving interfaces that applies to any
universality class described by a scalar order parameter. The speckle-intensity
covariance is numerically demonstrated to be equal to the square of the
two-time structure factor of the scattering material, for which an analytic
scaling function is obtained for large In addition, the two-time,
two-point order-parameter correlation function is found to scale as
, even for quite large
distances . The asymptotic power-law exponent for the autocorrelation
function is found to be , violating an upper bound
conjectured by Fisher and Huse.Comment: RevTex: 11 pages + 12 figures, submitted to PR
Phase-ordering of conserved vectorial systems with field-dependent mobility
The dynamics of phase-separation in conserved systems with an O(N) continuous
symmetry is investigated in the presence of an order parameter dependent
mobility M(\phi)=1-a \phi^2. The model is studied analytically in the framework
of the large-N approximation and by numerical simulations of the N=2, N=3 and
N=4 cases in d=2, for both critical and off-critical quenches. We show the
existence of a new universality class for a=1 characterized by a growth law of
the typical length L(t) ~ t^{1/z} with dynamical exponent z=6 as opposed to the
usual value z=4 which is recovered for a<1.Comment: RevTeX, 8 pages, 13 figures, to be published in Phys. Rev.
Stereotactic ablative radiotherapy for medically inoperable early stage lung cancer: early outcomes
Objective To evaluate the clinical outcome and safety of stereotactic ablative radiotherapy for medically inoperable stage I non- small-cell lung carcinoma. Design Retrospective case series. Setting Pamela Youde Nethersole Eastern Hospital, Hong Kong. Patients All patients with medically inoperable stage I non-small-cell lung carcinoma receiving stereotactic ablative radiotherapy since its establishment in 2008. Main outcome measures Disease control rate, overall survival, and treatment toxicities. Results Sixteen stage I non-small-cell lung carcinoma patients underwent the procedure from June 2008 to November 2011. The median patient age was 82 years and the majority (81%) had moderate-tosevere co-morbidity based on the Adult Comorbidity Evaluation 27 index. With a median follow-up of 22 months, the 2-year primary tumour control rate, disease-free survival and overall survival rates were 91%, 71% and 87%, respectively. No grade 3 (National Cancer Institute Common Terminology Criteria for Adverse Events) or higher treatment-related complications were reported. Conclusion Stereotactic ablative radiotherapy can achieve a high degree of local control safely in medically inoperable patients with early lung cancer.published_or_final_versio
Ultra-high brilliance multi-MeV -ray beam from non-linear Thomson scattering
We report on the generation of a narrow divergence (
mrad), multi-MeV ( MeV) and ultra-high brilliance ( photons s mm mrad 0.1\% BW) -ray
beam from the scattering of an ultra-relativistic laser-wakefield accelerated
electron beam in the field of a relativistically intense laser (dimensionless
amplitude ). The spectrum of the generated -ray beam is
measured, with MeV resolution, seamlessly from 6 MeV to 18 MeV, giving clear
evidence of the onset of non-linear Thomson scattering. The photon source has
the highest brilliance in the multi-MeV regime ever reported in the literature
- …