40 research outputs found

    Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Monascus-fermented products are mentioned in an ancient Chinese pharmacopoeia of medicinal food and herbs. Monascus-fermented products offer valuable therapeutic benefits and have been extensively used in East Asia for several centuries. Several biological activities of Monascus-fermented products were recently described, and the extract of Monascus-fermented products showed strong antioxidant activity of scavenging DPPH radicals. To evaluate whether Monascus-fermented dioscorea products have potential as nutritional supplements, Monascus-fermented dioscorea's modulation of oxidative-stress resistance and associated regulatory mechanisms in Caenorhabditis elegans were investigated. PRINCIPAL FINDINGS: We examined oxidative stress resistance of the ethanol extract of red mold dioscorea (RMDE) in C. elegans, and found that RMDE-treated wild-type C. elegans showed an increased survival during juglone-induced oxidative stress compared to untreated controls, whereas the antioxidant phenotype was absent from a daf-16 mutant. In addition, the RMDE reduced the level of intracellular reactive oxygen species in C. elegans. Finally, the RMDE affected the subcellular distribution of the FOXO transcription factor, DAF-16, in C. elegans and induced the expression of the sod-3 antioxidative gene. CONCLUSIONS: These findings suggest that the RMDE acts as an antioxidative stress agent and thus may have potential as a nutritional supplement. Further studies in C. elegans suggest that the antioxidant effect of RMDE is mediated via regulation of the DAF-16/FOXO-dependent pathway

    Miracle Fruit (Synsepalum dulcificum) Exhibits as a Novel Anti-Hyperuricaemia Agent

    No full text
    Miracle fruit (Synsepalum dulcificum) belongs to the Sapotaceae family. It can change flavors on taste buds, transforming acidic tastes to sweet. We evaluated various miracle fruit extracts, including water, butanol, ethyl acetate (EA), and hexane fractions, to determine its antioxidant effects. These extracts isolated from miracle fruit exerted potential for reduction of uric acid and inhibited xanthine oxidase activity in vitro and in monosodiumurate (MSU)-treated RAW264.7 macrophages. Moreover, we also found that the butanol extracts of miracle fruit attenuated oxonic acid potassium salt-induced hyperuricaemia in ICR mice by lowering serum uric acid levels and activating hepatic xanthine oxidase. These effects were equal to those of allopurinol, suggesting that the butanol extract of miracle fruit could be developed as a novel anti-hyperuricaemia agent or health food

    Faculté de droit de Douai ; Faculté des lettres de Grenoble ; Faculté mixte de médecine et de pharmacie de Lille ; Faculté des sciences de Paris

    No full text
    Faculté de droit de Douai ; Faculté des lettres de Grenoble ; Faculté mixte de médecine et de pharmacie de Lille ; Faculté des sciences de Paris. In: Bulletin administratif de l'instruction publique. Tome 38 n°676, 1885. pp. 1042-1043
    corecore