8 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Tilorone and Cridanimod Protect Mice and Show Antiviral Activity in Rats despite Absence of the Interferon-Inducing Effect in Rats

    No full text
    The synthetic compounds, Tilorone and Cridanimod, have the antiviral activity which initially had been ascribed to the capacity to induce interferon. Both drugs induce interferon in mice but not in humans. This study investigates whether these compounds have the antiviral activity in mice and rats since rats more closely resemble the human response. Viral-infection models were created in CD-1 mice and Wistar rats. Three strains of Venezuelan equine encephalitis virus were tested for the performance in these models. One virus strain is the molecularly cloned attenuated vaccine. The second strain has major virulence determinants converted to the wild-type state which are present in virulent strains. The third virus has wild-type virulence determinants, and in addition, is engineered to express green fluorescent protein. Experimentally infected animals received Tilorone or Cridanimod, and their treatment was equivalent to the pharmacopoeia-recomended human treatment regimen. Tilorone and Cridanimod show the antiviral activity in mice and rats and protect the mice from death. In rats, both drugs diminish the viremia. These drugs do not induce interferon-alpha or interferon-beta in rats. The presented observations allow postulating the existence of an interferon-independent and species-independent mechanism of action

    A Novel Mutation in a Kazakh Family with X-Linked Alport Syndrome.

    No full text
    Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome

    Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity

    No full text
    International audienceBrucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes

    Pedigree of a Kazakh Family with X-Linked Alport Syndrome.

    No full text
    <p>Affected individuals with kidney disease are shown with blackened squares (males) and circles (females). Normal individuals are shown with empty squares (males) and circles (females). Crossed squares or circles denote deceased individuals.</p

    Identification of a Novel <i>COL4A5</i> Mutation in a Family with X-Linked Alport Syndrome.

    No full text
    <p>A. Exon 25 sequencing from a normal male individual. B. Sequencing from a heterozygous female. C. G641E is a mutation that results in 48 abnormal amino acid residues in the COL4A5 protein.</p

    Genetic risk factors for restenosis after percutaneous coronary intervention in Kazakh population

    Get PDF
    Background: After coronary stenting, the risk of developing restenosis is from 20 to 35 %. The aim of the present study is to investigate the association of genetic variation in candidate genes in patients diagnosed with restenosis in the Kazakh population. Methods: Four hundred fifty-nine patients were recruited to the study; 91 patients were also diagnosed with diabetes and were excluded from the sampling. DNA was extracted with the salting-out method. The patients were genotyped for 53 single-nucleotide polymorphisms. Genotyping was performed on the QuantStudio 12K Flex (Life Technologies). Differences in distribution of BMI score among different genotype groups were compared by analysis of variance (ANOVA). Also, statistical analysis was performed using R and PLINK v.1.07. Haplotype frequencies and LD measures were estimated by using the software Haploview 4.2. Results: A logistic regression analysis found a significant difference in restenosis rates for different genotypes. FGB (rs1800790) is significantly associated with restenosis after stenting (OR = 2.924, P = 2.3E−06, additive model) in the Kazakh population. CD14 (rs2569190) showed a significant association in the additive (OR = 0.08033, P = 2.11E−09) and dominant models (OR = 0.05359, P = 4.15E−11). NOS3 (rs1799983) was also highly associated with development of restenosis after stenting in additive (OR = 20.05, P = 2.74 E−12) and recessive models (OR = 22.24, P = 6.811E−10). Conclusions: Our results indicate that FGB (rs1800790), CD14 (rs2569190), and NOS3 (rs1799983) SNPs could be genetic markers for development of restenosis in Kazakh population. Adjustment for potential confounder factor BMI gave almost the same results
    corecore