69 research outputs found

    Rapid flow cytometric measurement of protein inclusions and nuclear trafficking.

    Get PDF
    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules

    The trajectory taken by dimeric Cu/Zn superoxide dismutase through the protein unfolding and dissociation landscape is modulated by salt-bridge formation

    Get PDF
    Native mass spectrometry (MS) is a powerful means for studying macromolecular protein assemblies, including accessing activated states. However, much remains to be understood about what governs which regions of the protein (un)folding funnel are explored by activation of protein ions in vacuum. Here we examine the trajectory that Cu/Zn superoxide dismutase (SOD1) dimers take over the unfolding and dissociation free energy landscape in vacuum. We examined wild-type SOD1 and six disease-related point-mutants by using tandem MS and ion-mobility MS as a function of collisional activation. For six of the seven SOD1 variants, increasing activation prompted dimers to transition through two unfolding events and dissociate symmetrically into monomers with (as near as possible) equal charges. The exception was G37R, which proceeded only through the first unfolding transition, and displayed a much higher abundance of asymmetric products. Supported by the observation that ejected asymmetric G37R monomers were more compact than symmetric G37R ones, we localised this effect to the formation of a gas-phase salt-bridge in the first activated conformation. To examine the data quantitatively, we applied Arrhenius-type analysis to estimate the barriers on the corresponding free energy landscape. This reveals a heightening of the barrier to unfolding in G37R >5 kJmol-1 over the other variants, consistent with expectations for the strength of a salt-bridge. Our work demonstrates weaknesses in the simple general framework for understanding protein complex dissociation in vacuum, and highlights the importance of individual residues, their local environment, and specific interactions in governing product formation

    Flow cytometric measurement of the cellular propagation of TDP-43 aggregation

    Get PDF
    Amyotrophic lateral sclerosis is a devastating neuromuscular degenerative disease characterized by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology including TAR DNA-binding protein of 43 kDa (TDP-43) aggregates. Previous work suggests that TDP-43 can move between cells. Here we used a novel flow cytometry technique (FloIT) to analyze TDP-43 inclusions and propagation. When cells were transfected to express either mutant G294A TDP-43 fused to GFP or wild type TDP-43fused to tomato red and then co-cultured, flow cytometry detected intact cells containing both fusion proteins and using FloIT detected an increase in the numbers of inclusions in lysates from cells expressing wild type TDP-43-tomato. Furthermore, in this same model, FloIT analyses detected inclusions containing both fusion proteins. These results imply the transfer of TDP-43 fusion proteins between cells and that this process can increase aggregation of wild-type TDP-43 by a mechanism involving co-aggregation with G294A TDP-43.This work was supported by the NHMRC under Grant 1084144 and 1095215

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Alpha-2-Macroglobulin Is Acutely Sensitive to Freezing and Lyophilization: Implications for Structural and Functional Studies.

    Get PDF
    Alpha-2-macroglobulin is an abundant secreted protein that is of particular interest because of its diverse ligand binding profile and multifunctional nature, which includes roles as a protease inhibitor and as a molecular chaperone. The activities of alpha-2-macroglobulin are typically dependent on whether its conformation is native or transformed (i.e. adopts a more compact conformation after interactions with proteases or small nucleophiles), and are also influenced by dissociation of the native alpha-2-macroglobulin tetramer into stable dimers. Alpha-2-macroglobulin is predominately present as the native tetramer in vivo; once purified from human blood plasma, however, alpha-2-macroglobulin can undergo a number of conformational changes during storage, including transformation, aggregation or dissociation. We demonstrate that, particularly in the presence of sodium chloride or amine containing compounds, freezing and/or lyophilization of alpha-2-macroglobulin induces conformational changes with functional consequences. These conformational changes in alpha-2-macroglobulin are not always detected by standard native polyacrylamide gel electrophoresis, but can be measured using bisANS fluorescence assays. Increased surface hydrophobicity of alpha-2-macroglobulin, as assessed by bisANS fluorescence measurements, is accompanied by (i) reduced trypsin binding activity, (ii) increased chaperone activity, and (iii) increased binding to the surfaces of SH-SY5Y neurons, in part, via lipoprotein receptors. We show that sucrose (but not glycine) effectively protects native alpha-2-macroglobulin from denaturation during freezing and/or lyophilization, thereby providing a reproducible method for the handling and long-term storage of this protein.Early Career Fellowship from the National Health and Medical Research Council GNT1012521(A.R.W.); Wellcome Trust Programme Grant (J.R.K., C.M.D.) 094425/Z/10/Z; Samsung GRO Grant (M.R.W.)This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013003

    A chronic fatigue syndrome – related proteome in human cerebrospinal fluid

    Get PDF
    BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared

    The heat shock response in neurons and astroglia and its role in neurodegenerative diseases

    Full text link

    Inflammation in Alzheimer’s Disease and Molecular Genetics: Recent Update

    Full text link

    Assessment of metal concentrations in the SOD1<sup>G93A</sup> mouse model of amyotrophic lateral sclerosis and its potential role in muscular denervation, with particular focus on muscle tissue

    Get PDF
    © 2018 Elsevier Inc. Background: Amyotrophic lateral sclerosis (ALS) is among the most common of the motor neuron diseases, and arguably the most devastating. During the course of this fatal neurodegenerative disorder, motor neurons undergo progressive degeneration. The currently best-understood animal models of ALS are based on the over-expression of mutant isoforms of Cu/Zn superoxide dismutase 1 (SOD1); these indicate that there is a perturbation in metal homeostasis with disease progression. Copper metabolism in particular is affected in the central nervous system (CNS) and muscle tissue. Methods: This present study assessed previously published and newly gathered concentrations of transition metals (Cu, Zn, Fe and Se) in CNS (brain and spinal cord) and non-CNS (liver, intestine, heart and muscle) tissues from transgenic mice over-expressing the G93A mutant SOD1 isoform (SOD1G93A), transgenic mice over-expressing wildtype SOD1 (SOD1WT) and non-transgenic controls. Results: Cu accumulates in non-CNS tissues at pre-symptomatic stages in SOD1G93A tissues. This accumulation represents a potentially pathological feature that cannot solely be explained by the over-expression of mSOD1. As a result of the lack of Cu uptake into the CNS there may be a deficiency of Cu for the over-expressed mutant SOD1 in these tissues. Elevated Cu concentrations in muscle tissue also preceded the onset of symptoms and were found to be pathological and not be the result of SOD1 over-expression. Conclusions: It is hypothesized that the observed Cu accumulations may represent a pathologic feature of ALS, which may actively contribute to axonal retraction leading to muscular denervation, and possibly significantly contributing to disease pathology. Therefore, it is proposed that the toxic-gain-of-function and dying-back hypotheses to explain the molecular drivers of ALS may not be separate, individual processes; rather our data suggests that they are parallel processes

    Clusterin facilitates in vivo clearance of extracellular misfolded proteins.

    No full text
    The extracellular deposition of misfolded proteins is a characteristic of many debilitating age-related disorders. However, little is known about the specific mechanisms that act to suppress this process in vivo. Clusterin (CLU) is an extracellular chaperone that forms stable and soluble complexes with misfolded client proteins. Here we explore the fate of complexes formed between CLU and misfolded proteins both in vitro and in a living organism. We show that proteins injected into rats are cleared more rapidly from circulation when complexed with CLU as a result of their more efficient localization to the liver and that this clearance is delayed by pre-injection with the scavenger receptor inhibitor fucoidan. The CLU– client complexes were found to bind preferentially, in a fucoidan-inhibitable manner, to human peripheral blood monocytes and isolated rat hepatocytes and in the latter cell type were internalized and targeted to lysosomes for degradation. The data suggest, therefore, that CLU plays a key role in an extracellular proteostasis system that recognizes, keeps soluble, and then rapidly mediates the disposal of misfolded proteins. © 2012, Springer.A. Wyatt is grateful for an Australian Postgraduate Award and an Australian Institute for Nuclear Science and Engineering (AINSE) Postgraduate Award. This work was supported by a grant from the Australian Research Council (DP0773555). C. M. Dobson acknowledges support from the Wellcome Trust
    • …
    corecore