86 research outputs found

    E2-25K/Hip-2 regulates caspase-12 in ER stress–mediated Aβ neurotoxicity

    Get PDF
    Amyloid-β (Aβ) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Aβ neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)–resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Aβ increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2–mediated cell death. Finally, we find that E2-25K/Hip-2–deficient cortical neurons are resistant to Aβ toxicity and to the induction of ER stress and caspase-12 expression by Aβ. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress–mediated Aβ neurotoxicity

    Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

    Get PDF
    Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis

    Early Vascular Access Blood Flow as a Predictor of Long-term Vascular Access Patency in Incident Hemodialysis Patients

    Get PDF
    The long-term clinical benefits of vascular access blood flow (VABF) measurements in hemodialysis (HD) patients have been controversial. We evaluated whether early VABF may predict long-term vascular access (VA) patency in incident HD patients. We enrolled 57 patients, of whom 27 were starting HD with arteriovenous fistulas (AVFs) and 30 with arteriovenous grafts (AVGs). The patients' VABF was measured monthly with the ultrasound dilution technique over the course of the first six months after the VA operation. During the 20.4-month observational period, a total of 40 VA events in 23 patients were documented. The new VA events included 13 cases of stenosis and 10 thrombotic events. The lowest quartile of average early VABF was related to the new VA events. After adjusting for covariates such as gender, age, hypertension, diabetes, VA type, hemoglobin levels, body mass index, parathyroid hormone, and calcium-phosphorus product levels, the hazard ratio of VABF (defined as <853 mL/min in AVF or <830 mL/min in AVG) to incident VA was 3.077 (95% confidence interval, 1.127-8.395; P=0.028). There were no significant relationships between early VABF parameters and VA thrombosis. It is concluded that early VABF may predict long-term VA patency, particularly VA stenosis
    corecore