2,116 research outputs found
Interaction between superconductor and ferromagnetic domains in iron sheath: peak effect in MgB2/Fe wires
Interaction between the superconductor and ferromagnet in MgB2/Fe wires
results in either a plateau or a peak effect in the field dependence of
transport critical current, Ic(H). This is in addition to magnetic shielding of
external field. Current theoretical models cannot account for the observed peak
effect in Ic(H). This paper shows that the theoretical explanation of the peak
effect should be sought in terms of interaction between superconductor and
magnetic domain structure, obtained after re-magnetization of the iron sheath
by the self-field of the current. There is a minimum value of critical current,
below which the re-magnetization of the iron sheath and peak effect in Ic(H)
are not observed
Effect of carbon nanotube doping on critical current density of MgB2 superconductor
The effect of doping MgB2 with carbon nanotubes on transition temperature,
lattice parameters, critical current density and flux pinning was studied for
MgB2-xCx with x = 0, 0.05, 0.1, 0.2 and 0.3. The carbon substitution for B was
found to enhance Jc in magnetic fields but depress Tc. The depression of Tc,
which is caused by the carbon substitution for B, increases with increasing
doping level, sintering temperature and duration. By controlling the extent of
the substitution and addition of carbon nanotubes we can achieve the optimal
improvement on critical current density and flux pinning in magnetic fields
while maintaining the minimum reduction in Tc. Under these conditions, Jc was
enhanced by two orders of magnitude at 8T and 5K and 7T and 10K. Jc was more
than 10,000A/cm2 at 20K and 4T and 5K and 8.5T, respectively
Managing the evidence: the context and processes of information use by clinical nurse specialists
Information need and use literature relating to nurses has tended to treat them as a
homogeneous group without distinguishing their role or contribution to service delivery.
Clinical Nurse Specialists (CNSs) operate across the whole range of nursing specialisms
and their role includes advanced clinical care, education, research, consultation and
facilitation of change. They are relatively autonomous in their practice and are able to
exert considerable influence on nursing activities. The purpose of this research is to examine the advanced practice role, the social and
organisational frameworks within which CNSs operate and the inter-relationship of these
with information use. [Continues.
Mechanochemical-treated Cr-promoted vanadyl pyrophosphate catalyst for n-butane oxidation to maleic anhydride
Cr-promoted vanadium phosphate (VPO) catalyst was synthesized by mechanotreating VOHPO4·0.5H2O in cyclohexane for 2 hr using a high energy planetary ball miller followed by calcination in a flow of n-butane/air mixture at 673 K. The physico-chemical properties of the sample were investigated by several characterization techniques such as BET, XRD, redox titration, SEM, and TPR. The data were compared to the unmilled material. BET surface area measurement of the milled catalyst showed that it possesses higher surface area (13.2 m2 g−1) compared to the unmilled catalyst (6.4 m2 g−1). Milling also caused a slight increment in the average oxidation state of vanadium as well as the percentage of V5+ oxidation state. XRD pattern of the milled material revealed that the major diffraction peaks were broadened thus indicating a reduction of particle size. SEM micrographs showed the lost in the blossom morphology and the formation of layer packages, with more circular particles in the milled catalyst. The amount of active lattice oxygen species being removed from V4+-O− pairs increased significantly for mechanochemical treated Cr-doped VPO catalyst leads to the enhancement of the catalytic activity for n-butane oxidation to maleic anhydride
Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials
The embodied carbon of building materials and the energy consumed during construction have a significant impact on the
environmental credentials of buildings. The structural systems of a building present opportunities to reduce environmental emissions and energy. In this regard, mass timber materials have considerable potential as sustainable materials over other alternatives such as steel and concrete. The aim of this investigation was to compare the environment impact, energy consumption, and life cycle cost (LCC) of different wood-based materials in identical single-story residential buildings. The materials compared are laminated veneer lumber (LVL) and glued laminated timber (GLT). GLT has less global warming potential (GWP), ozone layer depletion (OLD), and land use (LU), respectively, by 29%, 37%, and 35% than LVL. Conversely, LVL generally has lower terrestrial acidification potential (TAP), human toxicity potential (HTP), and fossil depletion potential (FDP), respectively, by 30%, 17%, and 27%. The comparative outcomes revealed that using LVL reduces embodied energy by 41%. To identify which of these materials is the best alternative, various environmental categories, embodied energy, and cost criteria require further analysis. Therefore, the multi-criteria decision-making (MCDM) method has been applied to enable robust decision-making. The outcome showed that LVL manufacturing using softwood presents the most sustainable choice. These research findings contribute to the body of knowledge about the use of mass timber in construction
Low disordered, stable, and shallow germanium quantum wells: a playground for spin and hybrid quantum technology
Buried-channel semiconductor heterostructures are an archetype material
platform to fabricate gated semiconductor quantum devices. Sharp confinement
potential is obtained by positioning the channel near the surface, however
nearby surface states degrade the electrical properties of the starting
material. In this paper we demonstrate a two-dimensional hole gas of high
mobility ( cm/Vs) in a very shallow strained germanium
channel, which is located only 22 nm below the surface. This high mobility
leads to mean free paths , setting new benchmarks for holes in
shallow FET devices. Carriers are confined in an undoped Ge/SiGe
heterostructure with reduced background contamination, sharp interfaces, and
high uniformity. The top-gate of a dopant-less field effect transistor controls
the carrier density in the channel. The high mobility, along with a percolation
density of , light effective mass (0.09
m), and high g-factor (up to ) highlight the potential of undoped
Ge/SiGe as a low-disorder material platform for hybrid quantum technologies
The Private Provision of Public Goods: An Analysis of Homes on Golf Courses
This paper examines the joint production of golf and real estate development. The empirical results of this analysis show that, over time, golf courses are being constructed less for recreational golf and more for contractual assurance of green open space for homes. We believe that this fundamentally provides some evidence that the demand for environmental quality is growing and that markets are increasingly able to find creative contracting mechanisms to satisfy demands for public goods
Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping
A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size, and nanoinclusions induced by C incorporation and low-temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2
- …