8,244 research outputs found

    Quantum nonlocality of four-qubit entangled states

    Get PDF
    Quantum nonlocality of several four-qubit states is investigated by constructing a new Bell inequality. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, cluster state, and the state χ>|\chi> that has been recently proposed in [PRL, {\bf 96}, 060502 (2006)]. The Bell inequality is optimally violated by χ>|\chi> but not violated by the GHZ state. The cluster state also violates the Bell inequality though not optimally. The state χ>|\chi> can thus be discriminated from the cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [PRL, {\bf 72}, 797 (1994)].Comment: 13 pages, 1 figur

    Ground state energy of qq-state Potts model: the minimum modularity

    Full text link
    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the \emph{modularity}. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Phys. Rev. E \textbf{76}, 015102 (2007)]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(2)q(\geq 2) communities. Here, we calculate the modularity for qq communities by evaluating the ground state energy of the qq-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to k/k\langle \sqrt{k} \rangle / \langle k \rangle regardless of qq and that only the coefficient depends on qq. In particular, when the degree distribution follows a power law, the modularity is proportional to k1/2\langle k \rangle^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.Comment: 14 pages, 4 figure

    Cheryl's Birthday

    Get PDF
    We present four logic puzzles and after that their solutions. Joseph Yeo designed 'Cheryl's Birthday'. Mike Hartley came up with a novel solution for 'One Hundred Prisoners and a Light Bulb'. Jonathan Welton designed 'A Blind Guess' and 'Abby's Birthday'. Hans van Ditmarsch and Barteld Kooi authored the puzzlebook 'One Hundred Prisoners and a Light Bulb' that contains other knowledge puzzles, and that can also be found on the webpage http://personal.us.es/hvd/lightbulb.html dedicated to the book.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Pattern formation of indirect excitons in coupled quantum wells

    Full text link
    Using a nonlinear Schr\"odinger equation including short-range two-body attraction and three-body repulsion, we investigate the spatial distribution of indirect excitons in semiconductor coupled quantum wells. The results obtained can interpret the experimental phenomenon that annular exciton cloud first contracts then expands when the number of confined excitons is increased in impurity potential well, as observed by Lai \emph{et al.} [Lai etal.et al., Science \textbf{303}, 503 (2004)]. In particular, the model reconciles the patterns of exciton rings reported by Butov \emph{et al.} [Butov etal.et al., Nature \textbf{418}, 751 (2002)]. At higher densities, the model predicts much richer patterns, which could be tested by future experiments.Comment: 5 Revtex4 pages, 3 figure

    The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis.

    Get PDF
    Kisspeptin-GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH) release and modulation of the hypothalamic-pituitary-gonadal (HPG) axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH) through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V). Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons

    Evaluating Students’ Perception of Teaching Learning Computer Programming: A Study in a Bruneian Technological University

    Get PDF
    The present study is part of one of the pioneering government funded research, conducted in one of the institutions of higher learning in Brunei Darussalam. The study validates the existing instrument through survey (factor analysis) among cohort of students in a programming class. The study results not only endorse the reasons of declining the art and science of teaching/learning computer programming but also have brought an interesting finding of pedagogy. The results indicate that teaching and learning strategies are more teacher-centered (mean=3.85) rather than student-centered (mean = 2.87). This is in contrast to modern approach of teaching-learning, where problem-based or constructivist approach dominates. Further 67% of the students considered lack of motivation, 80% considered the curriculum is less practical and 50% thought it was more teacher-centered, as key reasons of this decline. Based on the findings some recommendations were made to the relevant authorities to improve the practice

    Net Worth Accumulation by Different Quintiles of Older Adults Approaching Retirement Age and 10 Years Later

    Get PDF
    The shift in responsibility for income security from the government to individuals makes the accumulation of net worth a vital issue. We investigated the rate of net worth accumulation for people aged 51 to 61 in 1991 (N=7,544) and 61 to 71 in 2001 (N=5,711) using the RAND Health and Retirement Study. We found that the rate of net worth accumulation by the fifth (top) quintile was extremely high in 1991, and the distribution of net worth became more skewed in favor of the wealthy in 2001. Older adults in the first and second quintiles are unable to face the challenge of the shift in responsibility for income security from the government to individuals

    Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    Full text link
    We report on ellipsometric measurements of the refractive indices of LAB-PPO, Nd-doped LAB-PPO and EJ-301 scintillators to the nearest +/-0.005, in the wavelength range 210-1000 nm.Comment: 7 pages, 4 figure

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    The nature of solar brightness variations

    Full text link
    The solar brightness varies on timescales from minutes to decades. Determining the sources of such variations, often referred to as solar noise, is of importance for multiple reasons: a) it is the background that limits the detection of solar oscillations, b) variability in solar brightness is one of the drivers of the Earth's climate system, c) it is a prototype of stellar variability which is an important limiting factor for the detection of extra-solar planets. Here we show that recent progress in simulations and observations of the Sun makes it finally possible to pinpoint the source of the solar noise. We utilise high-cadence observations from the Solar Dynamic Observatory and the SATIRE model to calculate the magnetically-driven variations of solar brightness. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface are computed with the MURAM code. We find that surface magnetic field and granulation can together precisely explain solar noise on timescales from minutes to decades, i.e. ranging over more than six orders of magnitude in the period. This accounts for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by CoRoT and Kepler uncovered brightness variations similar to that of the Sun but with much wider variety of patterns. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature Astronom
    corecore