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We present four logic puzzles and after that their solutions. Joseph Yeo designed Cheryl’s Birthday.

Mike Hartley came up with a novel solution for One Hundred Prisoners and a Light Bulb. Jonathan

Welton designed A Blind Guess and Abby’s Birthday. Hans van Ditmarsch and Barteld Kooi authored

the puzzlebook One Hundred Prisoners and a Light Bulb [5] that contains other knowledge puzzles,

and that can also be found on the webpage http://personal.us.es/hvd/lightbulb.html ded-

icated to the book.

1 Logic Puzzles

1.1 Cheryl’s Birthday

Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is. Cheryl

gives them a list of 10 possible dates for her birthday: May 15, 16, 19; June 17, 18; July 14, 16; and

August 14, 15, 17. Cheryl then tells only to Albert the month of her birthday, and tells only to Bernard

the day of her birthday. (And Albert and Bernard are aware that she did so.) Albert and Bernard now

have the following conversation:

• Albert: “I don’t know when Cheryl’s birthday is, but I know that you don’t know either.”

• Bernard: “At first I didn’t know when Cheryl’s birthday is, but now I know.”

• Albert: “Now I also know when Cheryl’s birthday is.”

When is Cheryl’s birthday?

This riddle was set by Joseph Yeo as one of the problems for the Secondary 3 and the Secondary 4

levels of the 2015 Singapore and Asian Schools Math Olympiad (SASMO) contests. He had modified it

from a 2013 entry of a blog by ‘Mr Brown’,1 that Joseph later traced to a 2006 entry in The Math Forum

‘Ask Dr. Math’.2 Cheryl’s Birthday riddle is reminiscent of Freudenthal’s Sum and Product riddle [6]

(see also [5, Chapter 7]), wherein the conversation between Mr. Sum and Mr. Product is very similar.

Cheryl’s Birthday riddle subsequently caught a lot of public attention. A Singapore TV presenter,

Kenneth Kong, was given this puzzle by a friend whose niece had difficulty solving it. Because the niece

was in primary school, Kong thought that the riddle was intended for primary school students. And

1http://www.mrbrown.com/blog/2013/02/yet-another-psle- maths-question-to-blow-your-mind.html
2http://mathforum.org/library/drmath/view/68613.html
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2 Cheryl’s Birthday

because Kong and his wife disagreed on the correct answer, he decided to post it online on his Facebook

page. This happened on 10 April 2015. Then, as they say, it went viral. It was in subsequent days

discussed by Alex Bellos in the British newspaper The Guardian, in the BBC news, in the New York

Times, in India Today, etc.3 See also [9].

1.2 One Hundred Prisoners and a Light Bulb

A group of 100 prisoners, all together in the prison dining area, are told that they will be all put in

isolation cells and then will be interrogated one by one in a room containing a light with an on/off

switch. The prisoners may communicate with one another by toggling the light-switch (and that is the

only way in which they can communicate). The light is initially switched off. There is no fixed order of

interrogation, or interval between interrogations, and the same prisoner may be interrogated again at

any stage. When interrogated, a prisoner can either do nothing, or toggle the light-switch, or announce

that all prisoners have been interrogated. If that announcement is true, the prisoners will (all) be set

free, but if it is false, they will all be executed. While still in the dining room, and before the prisoners go

to their isolation cells (forever), can the prisoners agree on a protocol that will set them free?

The 100 prisoners riddle has been going round since the early 2000s, a very nice early elaboration

is [3]. Solutions wherein agents play different roles (‘counter’ and ‘follower’) are widely known, and

also solutions wherein all agents play the same role but wherein part of their behaviour is determined by

chance (whether one becomes a ‘counter’ or a ‘follower’ is determined by rolling a pair of dice), and

wherein termination is not guaranteed but expected (the probability will approach 1). When Hans van

Ditmarsch gave a public interest lecture on One Hundred Prisoners and a Light Bulb at the University of

Western Australia, in Perth, Mike Hartley — he also runs a math puzzle site for children4 — proposed

a solution wherein all agents play the same role (behave the same) and where their behaviour is still

determined and not probabilistic. Also in that case, termination is also not guaranteed but expected.

What uniform protocol can they follow?

1.3 A Blind Guess

There are three players, each with a card bearing a single digit (0−9) on their head such that they can

see the other two numbers but not their own — although one is blind and can see no cards. They are told

the three digits make up a three digit square number (i.e. between 10 ·10 and 32 ·32), and are asked to

call out when they know their own number. After a long, long, long silence, the blind person correctly

identifies his card’s number.

What was it?

This riddle was proposed by Jonathan Welton. It can be seen as a variation of the Who has the

Sum? riddle [5, Chapter 6]. That riddle was also originally proposed by him, in the Sunday Times

magazine Brainteaser column, in the mid 1990s, and was later reprinted as Puzzle 27 in The Sunday

Times Brainteasers by Victor Bryant [2]. Hans and Barteld did not know this when they wrote their

puzzlebook, although they made an effort to trace the origin of the riddles and to report on their earliest

known source (their source for this riddle was from 2003). But they found out when Jonathan contacted

them, reading about it in the book.

3https://en.wikipedia.org/wiki/Cheryl’s_Birthday
4http://www.dr-mikes-math-games-for-kids.com/
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1.4 Abby’s Birthday

The problem setter announces to two strangers Abby and Barry:

“You each know the day of the week you were born on, but not the day of the week each

other was born on. However, I can tell you that you were born a day apart, and that Barry

was not born on a Monday.”

He then proceeds to ask Abby and Barry alternately if they can deduce which day of the week the other

person was born on, and receives the answers:

• Abby: “No.”

• Barry: “No.”

• Abby: “No.”

• Barry: “No.”

• Abby: “No.”

On what day of the week was Abby born?

Abby’s Birthday problem was also proposed by Jonathan Welton.

2 Solutions

We now proceed with the solutions of the riddles. It is more fun if you first try to solve them yourself.

2.1 Cheryl’s Birthday

We can visually represent the situation wherein Albert and Bernard have just been told their private

information about the month and the day, respectively, as follows.

May 19

May 16

May 15

June 18

June 17

July 14

July 16

August 17

August 15

August 14

Dates that share the same month are connected by dotted lines. These indicate that Albert cannot

distinguish these. When two dates have the same day, they are connected by a solid line, indicating that

Bernard cannot distinguish them.

When you look at this picture, June 18th and May 19th are special in the sense that they are not

connected to other dates by solid lines. That means that if one of those dates were Cheryl’s birthday,

then Bernard would know her birthday, because there are no alternatives for him to consider.
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Note also that in this picture for any date there is another date connected to it by a dotted line. This

means that for Albert, there is always an alternative. So, whatever Cheryl’s birthday is, Albert won’t

know when. This also means that when he says that he does not know her birthday, he does not convey

any information. This was common knowledge even to an outsider. However, when Albert says that he

knows that Bernard does not know Cheryl’s birthday, we can infer that Cheryl’s birthday is not in May

or June, because if it were in May or June — as far as Albert is concerned — her birthday might have

been on the 19th or 18th and then Bernard would know. The only way that Albert can know that Bernard

does not know the birthday, is if this is not the case.

If we update the model with the information that Cheryl’s birthday is not in May or June we find the

following picture.

July 14

July 16

August 17

August 15

August 14

In this picture the only dates connected by a solid lines are July 14th and August 14. Consequently,

on those dates Bernard does not know when Cheryl’s birthday is, but on all of the other dates he would

know, since in the updated picture there are no alternative dates for him to consider. (Not only did we

learn from Albert’s assertion that May and June are excluded, Bernard learnt the same.) So when Bernard

states that he does now know when Cheryl’s birthday is, we can conclude her birthday is not on the 14th.

(We can disregard his statement that at first he did not know Cheryl’s birthday, because Albert already

asserted that.)

If we carry out the update we get the following picture.

July 16

August 17

August 15

In this picture we see that Albert is still not certain of Cheryl’s birthday if it is in August, but otherwise

he knows her birthday, because there are no alternatives. He states that he knows, and therefore we now

also know that Cheryl’s birthday is on:

July 16

Joseph Yeo ventures that Cheryl’s Birthday was so widely discussed in the media because there was

much discussion whether the answer should be July 16 or August 17. In [9, page 4] he explains in detail

how some people obtained the wrong answer August 17.

2.2 One Hundred Prisoners and a Light Bulb

A well-known solution consists of the prisoners appointing one of them as the counter, where the re-

maining prisoners are followers. A follower turns the light on when it is off, but does so only once. If the
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light is on he does nothing and if the light is off and he has turned it on before, he also does nothing. The

counter turns the light off when it is on, and keeps count of how many times he has turned the light off;

and does nothing when the light is on. When the counter has reached 100 he announces that everybody

has been interrogated. In this standard solution we can think of all the prisoners as initially having a

token with value 1 in their head. The followers will drop one of their token when they turn on the light

and remain with value 0. Whereas the counter, by turning off the light, only increases his token all the

time, until it has value 100.

There is a probabilistic solution where all prisoners can both act as the counter and as a follower but

do so depending on the value of their token and depending on the outcome of rolling a dice: given the

value of their token and the state of the light they may either,

when the light is off, turn on the light and reduce their token, and, when the light is on, do

nothing (thus acting as a follower);

or,

when the light is off, do nothing and when the light is on, turn the light off and increase their

token (thus acting as a counter).

Termination cannot be guaranteed but can be expected (the probability will approach 1 in due time).

Expected execution time (given random scheduling of interrogations) can be shortened if the probability

of being a counter is high (or even 1) once a prisoner holds a token with value more than 50 (although

this has not been tested by simulations or verified by calculations). Roles are not fixed: for token values

below 50 it is important that the probability of being counter or follower is not 0 and not 1. For example,

if there are two prisoners hold tokens of value 50, and they only act as counters for that value of token,

neither of them will ever turn on the light. Nobody else will anyway. So then the interrogations will go

on forever without termination. No prisoner will reach token value 100. For more details on this solution,

see [5, page 92, Protocol 6].

It came therefore as a surprise to Hans that Mike Hartley suggested a solution wherein all prisoners

play the same role (and wherein that role is not probabilistic), i.e., wherein the state of the light and the

value of their token determine whether they act as counter or as follower. It is as follows.

• Each prisoner initially holds a token valued 1.

• If a prisoner enters the room and the light is off,

– then if their token is 0, they do nothing;

– otherwise, they switch the light on and subtract 1 from their token.

• If a prisoner enters the room and the light is on,

– then if their token is 0, they do nothing;

– and if their token is 99, they announce that all prisoners have been interrogated;

– otherwise, they switch off the light and add 1 to their token.

Given random scheduling this protocol is again expected to terminate. This may be somewhat surprising,

as ‘on average’ a prisoner will turn the light off equally often as turning the light on. The reason is the

(known) deviation from this expected average. A large deviation may result in a prisoner substantially

increasing his token, for a while, after which it may just as well substantially decrease again. Once this

deviation hits the roof, token value 100, the protocol terminates. The longer the interrogations, the more

likely it becomes to hit the roof. Clearly, this may take a while.
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Now for the standard protocol, given uniform random scheduling, and on assumption a single inter-

rogation takes place every day, the prisoners can expect to get out of prison after 24,5 years. For the

prisoners, who of course only care to get out of prison as soon as possible, this outlook is already not

quite so rosy. But this novel protocol is much worse. Mike Hartley:

I ran a computer simulation of it just now, and the 100 prisoners got out in, on average, 1613

years. The luckiest group got out in ‘only’ 137 years, the unluckiest were imprisoned when

the ancient Sumerians were just getting started, and still have 1800 years of their sentences

to serve.

Suppose k out of n prisoners have token values a1, a2, . . . , ak, the rest having token value 0. Let the

expected time for the prisoners to escape be Ua1,a2,...ak
if the light is off, and Ta1,a2,...ak

if the light is on.

Note that Un = 0, since in that case the prisoners have already escaped. If a random prisoner is chosen to

be interrogated, then

Ua1,a2,...ak
= 1+ n−k

n
Ua1,a2,...ak

+ 1
n ∑

k
i=1 Ta1−δ1i,a2−δ2i,...,ak−δki

and

Ta1,a2,...ak
= 1+ n−k

n
Ta1,a2,...ak

+ 1
n ∑

k
i=1Ua1+δ1i,a2+δ2i,...,ak+δki

.

This gives a system of linear equations for the expected times. It is hard to find general formulae for

Ua1,a2,...ak
and Ta1,a2,...ak

, but it is clear that the solution is finite, and so the prisoners will not be imprisoned

forever.

For example, to show an endgame, consider we have reached in the 100 prisoners case that one

prisoner has a token worth 99, and that the light is on. We now get that T99 = 1+ 99
100

T99 +
1

100
U(99+1).

Given that U100 = 0, T99 must therefore be 100. What does this mean? Given a prisoner with token 99,

the light on (token 1) and all other 99 prisoners with token 0, there is a 1
100

chance that the token-99

prisoner is interrogated and collects the last token, and there is a 99
100

chance that a token-0 prisoner is

interrogated, in which case the light remains on (back to T99). The probability of 1
100

indeed comes with

an expectation of 100 days. The expected time to escape for U100 is 0 because the prisoner with token

100 declares victory: all prisoners have been interrogated.

For three prisoners we get that Ta,b,c equals:

(

1+ 1
a+b+c

)

·
[

2(a2b+b2c+ c2a+ab2 +bc2 + ca2)+3abc+a+b+ c
]

so that T1,1,1 =
(

1+ 1
3

)

[12+3+3] = 24. To have to wait 24 days to get out of prison is not so bad.

2.3 A Blind Guess

There are 22 square numbers between 100 and 999. Every agent carries a number that is one of the three

digits of such a square number. A model of the uncertainty about the squares therefore consists triples

of digits. Now these are again, in a way, numbers. However, they are numbers between 1 and 999 —

where 1 is in fact 001. So, to model this problem we need far more than 22 states. Let the agents be

A,B,C and let C be the blind agent. We only need to model the uncertainty of A and B. Blind agent

C plays the role of us, the problem solvers. The domain is partitioned into a great deal of parts that

are {A,B}-connected and that are all disconnected from each other. Let us consider some such parts.
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Agent A cannot distinguish the states connected by a solid line and agent B cannot distinguish the states

connected by a dotted line.

100 400 900

Here, A cannot distinguish three states wherein she sees that B and C both have 0. She is uncertain

whether she has 1, 4, or 9. But B can distinguish all states. So, when asked to call out if he knows his

number, he will say: “Yes.” But the problem description tells us he did not. We can therefore rule out the

states 100, 400 and 900 from the model of uncertainty. We cannot yet rule out those squares. For that,

we also need to consider the part of the model

010 040 090

in which case A will say that she knows her number, and the three {A,B}-disconnected parts of the model

001 004 009

in which case both A and B will call out that they know their number.

More interesting cases are, for example,

526 576 676

and

675 625 225 265 765

Note that the squares 625 and 576 occur in these parts of the model in all their permutations. Still,

the parts do not have any symmetry.

If we take the first part, then either A or B would have initially called out (namely if the state had

been, respectively, 526 or 676), or else both would have called out later. But as this did not happen, after

two updates this part of the model disappears.

Similarly for the other part, after three updates. Agent C then reasons at follows: the state cannot be

675 because then A would have called out. But it cannot be 625 either because then, after B does not

hear A call out, B would have called out. And it cannot be 225 either, because, after A does not hear B

call out because B did not hear A call out, A would have called out. And dually for B, from the other side

of this {A,B}-chain.

We did not depict various other parts of the domain. After a certain finite number of such updates,

there is no further uncertainty reduction. The domain will then be reduced to the following, unique,

circular chain of uncertainty.

484 184 144

844814414

We observe that C holds 4 in all these states. This is therefore the solution of the problem.

We could actually think of C as having the universal relation on the domain — he is unable to

distinguish any of the states. Successive absence of announcements of knowledge will shrink the domain

more and more until at some stage only the circular partition remains. In this we have taken some

‘mathematical licence’ interpreting the problem formulation. There is no explicit synchronization in the

‘after a long, long silence’ part of the description. (By the way, this is the case in all older formulations

of such knowledge and ignorance puzzles, such as Littlewood’s 1953 Miscellany [7], and prior to that).
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We could alternatively have formulated it more explicitly: the problem setter asks A and B to give a

shout when he claps his hands, and tells them that he will continue to repeat this clapping action until

. . . Until nothing happens? Then you can wait a long time! We would then have to specify the number of

repetitions of hand clapping, like 3, or 4 (3 is in fact enough). We find the original formulation then more

elegant, as the ‘long, long silence’ suggests a finite number of iterations, without specifying the amount.

Which is all the information we need as problem solvers.

2.4 Abby’s Birthday

We number the days of the week from 1 to 7 for Monday to Sunday. Let a pair i j stand for ‘Abby was

born on a i and Barry was born on a j’. The model of uncertainty then is as follows, where Abby is

uncertain between worlds linked by a solid line and Barry is uncertain between states linked by a dotted

line.

17 12 32 34

54

567671212343

45

65 67

The successive announcements result in the following uncertainty reductions.

• Problem setter: “Barry was not born on Monday.”

17 12 32 34

54

56762343

45

65 67

• Abby: “No.”

17 12 32 34

54

5643

45

65 67

• Barry: “No.”

• Abby: “No.”

• Barry: “No.”

• Abby: “No.”

17 12 5445

Therefore, Abby was born on Monday!

3 Dynamic Epistemic Logic

Riddles about knowledge and ignorance such as those in this contribution have stood at the birth of

the so-called dynamic epistemic logic, that is a modal logic of knowledge and change of knowledge.

The models visualized are known as Kripke models. A well-known dynamic epistemic logic is public

announcement logic. For example, in Cheryl’s Birthday problem, Albert saying ‘I know that you don’t

know’ can be formalized in the logic of knowledge as the formula KA¬
∨

pd
KB pd , where KA stands for
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‘Albert knows that’ and KB for ‘Bernard knows that’, ¬ is logical negation,
∨

stands for disjunction,

and where pd is an atom ranging over the possible birthdays d. In the given model, this formula is

true exactly on dates in July or August and false in dates in May and June. Albert’s so-called public

announcement of this formula therefore results in the model that is restricted to dates in July and August.

Bernard subsequently saying ‘Now I know’ corresponds to updating with (a public announcement of) the

formula
∨

pd
KB pd , and Albert’s final announcement to an update with

∨

pd
KA pd . For more information

on dynamic epistemic logic see for example [4, 8, 1].
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