8,268 research outputs found

    PST and PARR: Plan specification tools and a planning and resource reasoning shell for use in satellite mission planning

    Get PDF
    Plan Specification Tools (PST) are tools that allow the user to specify satellite mission plans in terms of satellite activities, relevent orbital events, and targets for observation. The output of these tools is a set of knowledge bases and environmental events which can then be used by a Planning And Resource Reasoning (PARR) shell to build a schedule. PARR is a reactive planning shell which is capable of reasoning about actions in the satellite mission planning domain. Each of the PST tools and PARR are described as well as the use of PARR for scheduling computer usage in the multisatellite operations control center at Goddard Space Flight Center

    Design of Predictive Controllers by Dynamic Programming and Neural Networks

    Get PDF
    This paper proposes a method for the design of predictive controllers for nonlinear systems. The method consists of two phases, a solution phase and a learning phase. In the solution phase, dynamic programming is applied to obtain a closed-loop control law. In the learning phase, neural networks are used to simulate the control law. This phase overcomes the curse of dimensionality problem that has often hindered the implementation of control laws generated by dynamic programming. Experimental results demonstrate the effectiveness of the metho

    d_{xy}-Density wave in fermion-fermion cold atom mixtures

    Full text link
    We study density wave instabilities in a doubly-degenerate Fermi-Fermi mixture with SU(2)×SU(2)SU(2)\times SU(2) symmetry on a square lattice. For sufficiently large on-site inter-species repulsion, when the two species of fermions are both at half-filling, two conventional (ss-wave) number density waves are formed with a π\pi-phase difference between them to minimize the inter-species repulsion. Upon moving one species away from half-filling, an unconventional density wave with dxyd_{xy}-wave symmetry emerges. When both species are away from the vicinity of half-filling, superconducting instabilities dominate. We present results of a functional renormalization-group calculation that maps out the phase diagram at weak couplings. Also, we provide a simple explanation for the emergence of the dxyd_{xy}-density wave phase based on a four-patch model. We find a robust and general mechanism for dxyd_{xy}-density-wave formation that is related to the shape and size of the Fermi surfaces. The density imbalance between the two species of fermions in the vicinity of half-filling leads to phase-space discrepancy for different inter-species Umklapp couplings. Using a phase space argument for leading corrections in the one-loop renormalization group approach to fermions, we show that the phase-space discrepancy in our system causes opposite flows for the two leading intra-species Umklapp couplings and that this triggers the dxyd_{xy}-density-wave instability.Comment: revised long version; 8 pages, 7 figure

    Correlated Phases of Population Imbalanced Fermi-Fermi Mixtures on an Optical Lattice

    Full text link
    We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two different hyperfine states loaded on an optical lattice and with tunable inter-species interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion species is close to half-filling, the system is highly affected by lattice effects. With the majority species near half-filling and varying densities for the minority species, we find that several correlated phases emerge as the ground state, including a spin density wave state, a charge density wave state with stripe structure, and various p-wave BCS pairing states for both species. We study this system using a functional renormalization group method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and provide estimates for the critical temperatures.Comment: 5 pages, 4 figures, figures update

    A False Acceptance Error Controlling Method for Hyperspherical Classifiers

    Get PDF
    Controlling false acceptance errors is of critical importance in many pattern recognition applications, including signature and speaker verification problems. Toward this goal, this paper presents two post-processing methods to improve the performance of hyperspherical classifiers in rejecting patterns from unknown classes. The first method uses a self-organizational approach to design minimum radius hyperspheres, reducing the redundancy of the class region defined by the hyperspherical classifiers. The second method removes additional redundant class regions from the hyperspheres by using a clustering technique to generate a number of smaller hyperspheres. Simulation and experimental results demonstrate that by removing redundant regions these two post-processing methods can reduce the false acceptance error without significantly increasing the false rejection error

    Classical Extended Conformal Algebras Associated with Constrained KP Hierarchy

    Full text link
    We examine the conformal property of the second Hamiltonian structure of constrained KP hierarchy derived by Oevel and Strampp. We find that it naturallygives a family of nonlocal extended conformal algebras. We give two examples of such algebras and find that they are similar to Bilal's V algebra. By taking a gauge transformation one can map the constrained KP hierarchy to Kuperschmidt's nonstandard Lax hierarchy. We consider the second Hamiltonian structure in this representation. We show that after mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We show that this Hamiltonian structure defines the W-U(1)-Kac-Moody algebra by working out its conformally covariant form.Comment: NHCU-HEP-94-28, 19 pages (Plain TeX
    • …
    corecore