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SECTION 1. INTRODUCTION 
Predictive control methods have many exceptional features, including their broad applicability to a wide variety 
of systems and their ease of tuning [1]. However, only a few predictive controller design methods are applicable 
to nonlinear systems [2]–[3][4][5][6][7][8]. These approaches suffer from one or more of the following 
limitations: they may not be able to handle constraints, they may not guarantee a global optimal solution, and 
they may not be able to specify a closed-loop control law. 

SECTION 2. PROBLEM STATEMENT 

With 𝑦𝑦 as the output variable, u as the control variable, 𝜔𝜔 as the reference trajectory, 𝑘𝑘 = 0 as the 
current sampling instant, 𝐻𝐻𝑃𝑃 as the perdition horizon, 𝐻𝐻𝑚𝑚 as the minimum horizon and 𝐻𝐻𝑐𝑐 as the control 
horizon, the goal of a predictive control problem is to find a control law for the following system,  
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𝑦𝑦(𝑘𝑘 + 1) = 𝑓𝑓(𝑦𝑦(𝑘𝑘),⋯ ,𝑦𝑦(𝑘𝑘 − 𝑛𝑛), 𝑙𝑙1(𝑘𝑘),⋯ ,𝑢𝑢(𝑘𝑘 −𝑚𝑚))  (1) 

that minimizes the criterion function,  

𝐽𝐽 = � [𝑦𝑦
^

(𝑖𝑖) − 𝜔𝜔(𝑖𝑖)]2
𝐻𝐻𝑝𝑝

𝑖𝑖=𝐻𝐻𝑚𝑚
 (2) 

 while satisfying the constraints,  

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑦𝑦(𝑖𝑖) ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢(𝑖𝑖) ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝 − 1

∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆𝑢𝑢(𝑖𝑖) ≤ ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝 − 1
𝑢𝑢(𝑖𝑖) = 𝑢𝑢(𝐻𝐻𝑐𝑐 − 1)𝑖𝑖 > 𝐻𝐻𝑐𝑐 − 1

   (3)(4)(5)(6) 

where ∆𝑢𝑢(𝑖𝑖) = 𝑢𝑢(𝜄𝜄) − 𝑢𝑢(𝑖𝑖 − 1) and where the predictive output in Eq. (2) is  

𝑦𝑦
^

(𝑘𝑘 + 𝑖𝑖) = 𝑓𝑓(𝑧𝑧 (𝑘𝑘 + 𝑖𝑖 − 1),⋯ , 𝑧𝑧(𝑘𝑘 + 𝑖𝑖 − 𝑛𝑛),
𝑢𝑢(𝑘𝑘 + 𝑖𝑖 − 1),𝑢𝑢(𝑘𝑘 + 𝑖𝑖 − 𝑚𝑚))

  (7) 

View Source  (following [1]) with  

𝑧𝑧(𝑗𝑗) = 𝑦𝑦(𝑗𝑗)𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0

𝑧𝑧(𝑗𝑗) = 𝑦𝑦
^

(𝑗𝑗)𝑖𝑖𝑖𝑖𝑖𝑖 > 0.
 (8) 

Eqs. (3) and (4) represent constraints on the operational regions of the output and control variables, 
respectively. Eq. (5) limits the rate of change of the controller output and Eq. (6) constrains the controller 
output to be a constant when the control process moves 𝐻𝐻𝑐𝑐 sampling periods into the future. 

SECTION 3. A DP-BASED SOLUTION APPROACH 

The problem defined in the previous section can be viewed as an optimal control problem and can be 
solved via dynamic programming (DP). DP offers several advantages: (i) it can handle constraints easily, (ii) 
it gives the global minimum solution, and (iii) it provides closed-loop solutions. This study relies on DP to 
develop a predictive control law. 

To simplify the development process, the system model of Eq. (1) is rewritten as  

𝑦𝑦(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘),∆𝑢𝑢(𝑘𝑘)) (9) 

where  

𝐱𝐱(𝑘𝑘) = [𝑣𝑣(𝑘𝑘),𝑦𝑦(𝑘𝑘 − 1),⋯ ,𝑦𝑦(𝑘𝑘 − 𝑛𝑛),
𝑢𝑢(𝑘𝑘 − 1),𝑢𝑢(𝑘𝑘 − 2),⋯ ,𝑢𝑢(𝑘𝑘 −𝑚𝑚)]𝑇𝑇 .. (10) 

Also, the cost associated with the ith stage of the control process is expressed as  

https://ieeexplore.ieee.org/document/#deqn2
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𝑔𝑔(𝒙𝒙(𝑖𝑖 − 1),∆𝑢𝑢(𝑖𝑖 − 1)) = [𝑦𝑦(𝑖𝑖) −𝜔𝜔(𝑖𝑖)]2

= [ℎ(𝒙𝒙(𝑖𝑖 − 1),∆𝑢𝑢(𝑖𝑖 − 1))−𝜔𝜔(𝑖𝑖)]2
 (11) 

By applying the principle of optimality [9], it can be shown that the general recurrence relation for the 
optimal control law is  

𝐽𝐽𝐻𝐻𝑐𝑐−𝑘𝑘,𝐻𝐻𝑃𝑃
∗ (𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘)) =

𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑢𝑢(𝐻𝐻𝑐𝑐−𝑘𝑘)

[𝑔𝑔(𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘),∆𝑢𝑢(𝐻𝐻𝑐𝑐 − 𝑘𝑘)) +

𝐽𝐽𝐻𝐻𝑐𝑐−𝑘𝑘+1,𝐻𝐻𝑃𝑃
∗ (𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘 + 1))]

 (12) 

where 𝐽𝐽𝑚𝑚,𝑀𝑀(𝑥𝑥(𝑚𝑚)) denotes the portion of the criterion function associated with the time interval from 
the 𝑚𝑚th to the 𝑀𝑀th sampling instant for the given 𝑥𝑥(𝑚𝑚) and that 𝐽𝐽∗ represents the optimal value of 𝐽𝐽. In 
addition, in the absence of ∆𝑢𝑢 constraints, the recurrence relation becomes  

𝐽𝐽𝐻𝐻𝑐𝑐−𝑘𝑘,𝐻𝐻𝑃𝑃
∗ (𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘)) =

𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑢𝑢(𝐻𝐻𝑐𝑐−𝑘𝑘)

[𝑞𝑞(𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘),∆𝑢𝑢(𝐻𝐻𝑐𝑐 − 𝑘𝑘)) +

𝐽𝐽𝐻𝐻𝑐𝑐−𝑘𝑘+1,𝐻𝐻𝑃𝑃
∗ (𝐱𝐱(𝐻𝐻𝑐𝑐 − 𝑘𝑘 + 1))]

   (13) 

 
where  
 

𝑞𝑞(𝐱𝐱(𝑖𝑖 − 1),𝑢𝑢(𝑖𝑖 − 1)) = [𝑦𝑦(𝑖𝑖) −𝜔𝜔(𝑖𝑖)]2

= [𝑓𝑓(𝐱𝐱(𝑖𝑖 − 1),𝑢𝑢(𝑖𝑖 − 1))−𝜔𝜔(𝑖𝑖)]2
  (14) 

To implement the control policy in a closed-loop configuration, the DP generated solutions should be stored in 
high-speed memory so that appropriate control signals can be retrieved online by means of a suitable table look-
up method. However, this constitutes a formidable storage burden since the memory requirement increases 
exponentially with the order of the system. This “curse of dimensionality” problem is resolved in the next 
section. 

SECTION 4. THE NEURAL CONTROL METHOD 
This section introduces a neural network based approach to replace the conventional table look-up method. For 
simplicity, the approach as described is applicable only to problems with ∆𝑢𝑢 constraints. (The approach can be 
modified to handle problems without ∆𝑢𝑢 constraints.) 
 
To learn the DP generated control law, a regression neural network (RNN) method can be proposed with the 
following steps:  

1. Use a trajectory planner to generate the desired output response 𝑦𝑦𝑑𝑑 . 
2. Set the reference trajectory 𝜔𝜔 = 𝑦𝑦𝑑𝑑 and use the previously described DP-based solution method to 

compute the predictive control law. 
3. With data provided by the DP-based control law, train a RNN to simulate the mapping from 𝑥𝑥(𝑘𝑘) to 

∆𝑢𝑢(𝑘𝑘) 
This direct method, however, has two drawbacks. First, the neural network training process must be repeated 
when the desired output response has been changed. This restricts the practicality of the control method. 



Second, due to the existence of constraints, the control law may not be a continuous or continuously 
differentiable function of 𝑥𝑥(𝑘𝑘). As a result, accurate neural network training may be difficult. 
 
To resolve the first problem, this study uses the following first-order reference trajectory to approximate the 
desired output response 𝑦𝑦𝑑𝑑,  
 

𝜔𝜔(𝑘𝑘 + 1) = (1 − 𝛼𝛼)𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝐻𝐻𝑃𝑃) +
𝛼𝛼𝛼𝛼(𝑘𝑘 + 𝑖𝑖 − 1)1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝0 ≤ 𝛼𝛼 < 1 (15) 

with 𝜔𝜔(𝑘𝑘) = 𝑦𝑦(𝑘𝑘). By generating the reference trajectory 𝜔𝜔 in this manner, the approach characterizes any 
desired output response 𝑦𝑦𝑑𝑑 by 𝑦𝑦(𝑘𝑘) and 𝑦𝑦𝑑𝑑{𝑘𝑘 +𝐻𝐻𝑝𝑝) when 𝜔𝜔 is given. Treating 𝑦𝑦(𝑘𝑘) and 𝑦𝑦𝑑𝑑{𝑘𝑘 + 𝐻𝐻𝑝𝑝) as 
trajectory parameters, this study uses the following procedure to create training samples so that neural 
networks can be trained to generate a trajectory dependent predictive control law:  

1. Quantize the admissible 𝑦𝑦(𝑘𝑘) and 𝑦𝑦𝑑𝑑(𝑘𝑘 +𝐻𝐻𝑝𝑝) values into a fi.nite number of levels. 
2. For every quantized set of [𝑦𝑦(𝑘𝑘)𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝐻𝐻𝑝𝑝)], use the proposed DP solution method to find the 

predictive control law. 
3. With 𝑥𝑥(𝑘𝑘) and 𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝐻𝐻𝑝𝑝) as inputs and ∆𝑢𝑢(𝑘𝑘) as output, use results obtained from the previous step 

to train neural networks. Note that 𝑦𝑦(𝑘𝑘) is an element of x(k). 
Since the trajectory parameters 𝑦𝑦(𝑘𝑘) and 𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝐻𝐻𝑝𝑝) are part of the neural network inputs, they can be varied 
to account for desired output response changes. For convenience, the input vector is denoted as 𝑧𝑧 where 
𝑧𝑧T(𝑘𝑘) = [𝑥𝑥T(𝑘𝑘)𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝐻𝐻𝑝𝑝)]. 
 
To resolve the second problem, a divide-and-conquer strategy is proposed to divide the potentially 
discontinuous mapping learning problem into several continuous mapping learning problems. In particular, 
before the application of the RNN, a classification neural network (CNN) is first used to learn to classify the 
predictive control policy into the following five patterns  
 

𝑢𝑢(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢(𝑘𝑘 − 1) + ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢(𝑘𝑘 − 1) + ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (16) 

 
Hereafter, the first four patterns are referred to as the 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 control patterns, 
respectively. The last control pattern is called the nonsaturated control pattern. Note that the control signals 
associated with 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 control patterns are apparently known and the values of 𝑢𝑢(𝑘𝑘) associated with 
the ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 patterns can also readily be determined since 𝑢𝑢(𝑘𝑘 − 1) is one of the CNN inputs. 
Consequently, with the assistance of the CNN, the RNN only needs to learn to simulate the nonsaturated control 
pattern. The possibility of using a RNN to learn a discontinuous mapping is thus avoided. 
 
The block diagram of Fig. 1 depicts the structure of the proposed two-stage neural control method. In the first 
stage, a CNN module is used to classify the 𝑧𝑧(𝑘𝑘) signal into one of five predefined categories. The control signals 
associated with the first four control patterns are determined with the CNN whereas the RNN is used to 
generate nonsaturated control commands corresponding to a continuous mapping region. (Although not shown 
in Fig. 1, the RNN has the same inputs as the CNN.)  



 
 
Fig. 1. The block diagram of the proposed neural control method. 

SECTION 5. EXPERIMENTAL STUDIES 
Two predictive control problems for a DC motor servo system are posed to test the effectiveness of the method. 
The experimental setup uses a PC to perform the I/O actions. The axes of an X-Y table are actuated by two linear 
voltage amplifier driven DC motors. The model of each DC motor servo system is of the following form,  
 

𝑦𝑦(𝑘𝑘 + 1) = 𝑎𝑎𝑎𝑎(𝑘𝑘) + 𝑏𝑏𝑏𝑏(𝑘𝑘) + 𝑐𝑐sgn(𝑦𝑦(𝑘𝑘)) + 𝑑𝑑  (17) 

where 𝑦𝑦 is the angular velocity of the DC motor, 𝑢𝑢 is the armature voltage and sgn is the signum function used 
to account for the effect of friction. The parameters of the model were determined by a standard least-squares 
identification method. The mean and variance of the trajectory tracking error, 𝑒𝑒 = 𝑦𝑦𝑑𝑑 − 𝑦𝑦, were used to 
characterize the tracking efficacy. 
 
In applying the neural control method, the one-hidden-layer optimal interpolative (OI) neural network and 
training method proposed by Sin and Defigueiredo [11] was used to construct the CNN. The implementation of 
the RNN is based on the one-hidden-layer radial basis function (RBF) neural network and the training algorithm 
developed by Chen and Billings [12]. 
 
The tested control methods were used to track two different trajectories. In the first case, the desired output 
response was 𝑦𝑦𝑎𝑎(𝑘𝑘) = 700sin (2𝜋𝜋𝜋𝜋/500)rpm. The desired output response of the second case was a 5 second 
period (50% duty cycle) square-wave function whose velocity changed between 700 and −700 rpm. The length of 
both control processes was 20 seconds. For the square-wave tracking problem, the transition period data were 
excluded in computing the means and variances of the trajectory tracking errors so that the regulator behavior 
of the tested control methods could be examined more accurately. For reliability, the experiment was repeated 
five times. 
 
Based on restrictions imposed by the hardware, the following constraints were included,  
 

−1000rpm ≤ 𝑦𝑦(𝑖𝑖) ≤ 1000rpm1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝
−33V ≤ 𝑢𝑢(𝑖𝑖) ≤ 33V0 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑝𝑝 − 1   (18)(19) 

 
corresponding to a maximum speed limit of 1000 rpm and an armature voltage limit of 33 V. To simulate a 
deadbeat controller, the prediction horizon 𝐻𝐻𝑝𝑝, the minimum horizon 𝐻𝐻𝑚𝑚, and the control horizon 𝐻𝐻𝑐𝑐 were 
chosen as 10, 1, and 3, respectively [1]. 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8775/27786/1239766/1239766-fig-1-source-large.gif


In applying the proposed DP based solution approach, the admissible 𝑦𝑦 and 𝑢𝑢 regions were both quantized into 
101 grid points while the admissible region of 𝑦𝑦𝑑𝑑(𝐻𝐻𝑝𝑝) was quantized into 41 grid points. The reference 
trajectory parameter 𝜔𝜔 was chosen as 0.1. With these settings, DP found 3892 sets of admissible solutions 
containing 1291 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 control pattern data, 1043 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 control pattern data and 1558 nonsaturated control 
pattern data. The number of floating point variables that needed to be stored was 11676. With these data, the 
OI network based CNN achieved a 99% classification accuracy with 12 hidden neurons. For the RNN part, a 50-
hidden-node RBF network was employed. Overall, the proposed neural control method required 220 floating 
point number memory space, representing a 98% storage space reduction. 
 
The tracking performance of the proposed approach was compared to that of the conventional table look-up 
control method. The two methods were used to track the two desired output responses described in the 
beginning of this section. The experimental results, summarized in Tables 1 and 2, indicate that the tracking 
performance of the proposed approach – with its significant saving in the storage requirement – is not inferior 
to that of the table look-up method. To explain this phenomenon, recall that the DP-based method generates 
the predictive control law only at a finite number of grid points. In the remaining part of the x space, the control 
policy is determined by interpolation. The table look-up method is thus subject to interpolation errors. The 
comparable tracking results demonstrate that the generalization error of the neural networks is not necessarily 
larger than the interpolation error associated with the table look-up method. The results show that the method 
can reduce the storage space requirement by a factor of 50.  
 
Table 1: Summary of trajectory tracking errors for example 1: Sinusoidal output response case. 
 

Experiment Number Table Look up method  Neutral Controller  
 Mean (rpm) Variance (rpm2) Mean (rpm) Variance (rpm2) 
1 1.58 41.76 1.91 31.99 
2 1.53 44.12 1.88 31.65 
3 1.54 42.67 1.98 31.70 
4 1.70 44.84 2.27 30.33 
5 1.46 43.69 2.24 30.06 
Average 1.56 43.42 2.06 31.15 

 
Table 2: Summary of trajectory tracking errors for example 1: Square wave output response case. 
 

Experiment Number Table Look up method  Neutral Controller  
 Mean (rpm) Variance (rpm2) Mean (rpm) Variance (rpm2) 
1 2.62 24.26 -0.02 15.80 
2 2.62 18.76 -0.01 19.40 
3 2.46 21.83 -0.13 21.31 
4 2.54 20.75 0.01 19.23 
5 2.62 20.38 -0.08 15.11 
Average 2.57 21.20 -0.03 18.17 

SECTION 6. CONCLUSION 
This paper proposes a dynamic programming (DP) and neural network based predictive controller design 
method for nonlinear systems. The DP based solution method has several exceptional features. First, it deals 
with constraints easily. Second, it finds the global optimal solution. Third, it produces a closed-loop control law. 
To overcome the potential “curse of dimensionality” problem associated with the DP generated control law, 
neural networks are used to reduce the storage requirement. The proposed approach can achieve significant 
storage space saving without sacrificing tracking efficacy. In addition to the significant saving in memory space, 



experimental results demonstrate that the control method provides tracking performance comparable to that of 
a conventional approach. 
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