1,832 research outputs found
Multiple-Access Bosonic Communications
The maximum rates for reliably transmitting classical information over
Bosonic multiple-access channels (MACs) are derived when the transmitters are
restricted to coherent-state encodings. Inner and outer bounds for the ultimate
capacity region of the Bosonic MAC are also presented. It is shown that the
sum-rate upper bound is achievable with a coherent-state encoding and that the
entire region is asymptotically achievable in the limit of large mean input
photon numbers.Comment: 11 pages, 5 figures, corrected two figures, accepted for publication
in Phys. Rev.
Optimal Quantum States for Image Sensing in Loss
We consider a general image sensing framework that includes many quantum
sensing problems by an appropriate choice of image set, prior probabilities,
and cost function. For any such problem, in the presence of loss and a signal
energy constraint, we show that a pure input state of light with the signal
modes in a mixture of number states minimizes the cost among all
ancilla-assisted parallel strategies. Lossy binary phase discrimination with a
peak photon number constraint and general lossless image sensing are considered
as examples.Comment: 6 pages, 3 figures. The supplementary material is provided as an
appendix. The content is the same as the published versio
Minimum Renyi and Wehrl entropies at the output of bosonic channels
The minimum Renyi and Wehrl output entropies are found for bosonic channels
in which the signal photons are either randomly displaced by a Gaussian
distribution (classical-noise channel), or in which they are coupled to a
thermal environment through lossy propagation (thermal-noise channel). It is
shown that the Renyi output entropies of integer orders z>1 and the output
Wehrl entropy are minimized when the channel input is a coherent state.Comment: Minimal revision. Accepted for publication on Phys. Rev.
Symmetric M-ary phase discrimination using quantum-optical probe states
We present a theoretical study of minimum error probability discrimination,
using quantum- optical probe states, of M optical phase shifts situated
symmetrically on the unit circle. We assume ideal lossless conditions and full
freedom for implementing quantum measurements and for probe state selection,
subject only to a constraint on the average energy, i.e., photon number. In
particular, the probe state is allowed to have any number of signal and
ancillary modes, and to be pure or mixed. Our results are based on a simple
criterion that partitions the set of pure probe states into equivalence classes
with the same error probability performance. Under an energy constraint, we
find the explicit form of the state that minimizes the error probability. This
state is an unentangled but nonclassical single-mode state. The error
performance of the optimal state is compared with several standard states in
quantum optics. We also show that discrimination with zero error is possible
only beyond a threshold energy of (M - 1)/2. For the M = 2 case, we show that
the optimum performance is readily demonstrable with current technology. While
transmission loss and detector inefficiencies lead to a nonzero erasure
probability, the error rate conditional on no erasure is shown to remain the
same as the optimal lossless error rate.Comment: 13 pages, 10 figure
Compensatory remodeling of a septo-hippocampal GABAergic network in the triple transgenic Alzheimer's mouse model
Background Alzheimer's disease (AD) is characterized by a progressive loss of memory that cannot be efficiently managed by currently available AD therapeutics. So far, most treatments for AD that have the potential to improve memory target neural circuits to protect their integrity. However, the vulnerable neural circuits and their dynamic remodeling during AD progression remain largely undefined. Methods Circuit-based approaches, including anterograde and retrograde tracing, slice electrophysiology, and fiber photometry, were used to investigate the dynamic structural and functional remodeling of a GABAergic circuit projected from the medial septum (MS) to the dentate gyrus (DG) in 3xTg-AD mice during AD progression. Results We identified a long-distance GABAergic circuit that couples highly connected MS and DG GABAergic neurons during spatial memory encoding. Furthermore, we found hyperactivity of DG interneurons during early AD, which persisted into late AD stages. Interestingly, MS GABAergic projections developed a series of adaptive strategies to combat DG interneuron hyperactivity. During early-stage AD, MS-DG GABAergic projections exhibit increased inhibitory synaptic strength onto DG interneurons to inhibit their activities. During late-stage AD, MS-DG GABAergic projections form higher anatomical connectivity with DG interneurons and exhibit aberrant outgrowth to increase the inhibition onto DG interneurons. Conclusion We report the structural and functional remodeling of the MS-DG GABAergic circuit during disease progression in 3xTg-AD mice. Dynamic MS-DG GABAergic circuit remodeling represents a compensatory mechanism to combat DG interneuron hyperactivity induced by reduced GABA transmission
Use of Novel Strategies to Develop Guidelines for Management of Pyogenic Osteomyelitis in Adults: A WikiGuidelines Group Consensus Statement.
Importance
Traditional approaches to practice guidelines frequently result in dissociation between strength of recommendation and quality of evidence.
Objective
To construct a clinical guideline for pyogenic osteomyelitis management, with a new standard of evidence to resolve the gap between strength of recommendation and quality of evidence, through the use of a novel open access approach utilizing social media tools.
Evidence Review
This consensus statement and systematic review study used a novel approach from the WikiGuidelines Group, an open access collaborative research project, to construct clinical guidelines for pyogenic osteomyelitis. In June 2021 and February 2022, authors recruited via social media conducted multiple PubMed literature searches, including all years and languages, regarding osteomyelitis management; criteria for article quality and inclusion were specified in the group's charter. The GRADE system for evaluating evidence was not used based on previously published concerns regarding the potential dissociation between strength of recommendation and quality of evidence. Instead, the charter required that clear recommendations be made only when reproducible, prospective, controlled studies provided hypothesis-confirming evidence. In the absence of such data, clinical reviews were drafted to discuss pros and cons of care choices. Both clear recommendations and clinical reviews were planned with the intention to be regularly updated as new data become available.
Findings
Sixty-three participants with diverse expertise from 8 countries developed the group's charter and its first guideline on pyogenic osteomyelitis. These participants included both nonacademic and academic physicians and pharmacists specializing in general internal medicine or hospital medicine, infectious diseases, orthopedic surgery, pharmacology, and medical microbiology. Of the 7 questions addressed in the guideline, 2 clear recommendations were offered for the use of oral antibiotic therapy and the duration of therapy. In addition, 5 clinical reviews were authored addressing diagnosis, approaches to osteomyelitis underlying a pressure ulcer, timing for the administration of empirical therapy, specific antimicrobial options (including empirical regimens, use of antimicrobials targeting resistant pathogens, the role of bone penetration, and the use of rifampin as adjunctive therapy), and the role of biomarkers and imaging to assess responses to therapy.
Conclusions and Relevance
The WikiGuidelines approach offers a novel methodology for clinical guideline development that precludes recommendations based on low-quality data or opinion. The primary limitation is the need for more rigorous clinical investigations, enabling additional clear recommendations for clinical questions currently unresolved by high-quality data
Compensatory remodeling of a septo-hippocampal GABAergic network in the triple transgenic Alzheimer’s mouse model
Abstract
Background
Alzheimer’s disease (AD) is characterized by a progressive loss of memory that cannot be efficiently managed by currently available AD therapeutics. So far, most treatments for AD that have the potential to improve memory target neural circuits to protect their integrity. However, the vulnerable neural circuits and their dynamic remodeling during AD progression remain largely undefined.
Methods
Circuit-based approaches, including anterograde and retrograde tracing, slice electrophysiology, and fiber photometry, were used to investigate the dynamic structural and functional remodeling of a GABAergic circuit projected from the medial septum (MS) to the dentate gyrus (DG) in 3xTg-AD mice during AD progression.
Results
We identified a long-distance GABAergic circuit that couples highly connected MS and DG GABAergic neurons during spatial memory encoding. Furthermore, we found hyperactivity of DG interneurons during early AD, which persisted into late AD stages. Interestingly, MS GABAergic projections developed a series of adaptive strategies to combat DG interneuron hyperactivity. During early-stage AD, MS-DG GABAergic projections exhibit increased inhibitory synaptic strength onto DG interneurons to inhibit their activities. During late-stage AD, MS-DG GABAergic projections form higher anatomical connectivity with DG interneurons and exhibit aberrant outgrowth to increase the inhibition onto DG interneurons.
Conclusion
We report the structural and functional remodeling of the MS-DG GABAergic circuit during disease progression in 3xTg-AD mice. Dynamic MS-DG GABAergic circuit remodeling represents a compensatory mechanism to combat DG interneuron hyperactivity induced by reduced GABA transmission
Characterization of a Low Affinity Thyroid Hormone Receptor Binding Site within the Rat GLUT4 Gene Promoter
Previous studies have demonstrated that thyroid hormone (T3) stimulates insulin-responsive glucose transporter (GLUT4) transcription and protein expression in rat skeletal muscle. The aim of the present study was to define a putative thyroid hormone response element (TRE) within the rat GLUT4 promoter and thus perhaps determine whether T3 acts directly to augment skeletal muscle GLUT4 transcription. To this end, electrophoretic mobility shift analyses were performed to analyze thyroid hormone receptor (TR) binding to a previously characterized 281-bp T3-responsive region of the rat GLUT4 promoter. Indeed, within this region, a TR-binding site of the standard DR+4 TRE variety was located between bases −457/−426 and was shown to posses a specific affinity for in vitro translated TRs. Interestingly, however, the GLUT4 TR-binding site demonstrated a significantly lower affinity compared to a consensus DR+4 TRE, and only bound TRs appreciatively in the form of high affinity heterodimers, in this case with the cis-retinoic acid receptor.
In conclusion, these data demonstrated the presence of a specific TR-binding site within a T3-responsive region of the rat GLUT4 promoter and thus support the supposition that thyroid hormone acts directly to stimulate GLUT4 transcription in rat skeletal muscle. Moreover, characterization of a novel TR-binding site with low affinity suggests an additional mechanism by which the intrinsic activity and responsiveness of thyroid hormone regulated genes may be modulated
Novel Common Genetic Susceptibility Loci for Colorectal Cancer
BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screenin
- …