34 research outputs found

    Phonon-Assisted Exciton Transfer into Silicon Using Nanoemitters: The Role of Phonons and Temperature Effects in Forster Resonance Energy Transfer

    Get PDF
    Cataloged from PDF version of article.We study phonon-assisted Forster resonance energy transfer (FRET) into an indirect band-gap semiconductor using nanoemitters. The unusual temperature dependence of this energy transfer, which is measured using the donor nanoemitters of quantum dot (QD) layers integrated on the acceptor monocrystalline bulk silicon as a model system, is predicted by a phonon-assisted exciton transfer model proposed here. The model includes the phonon-mediated optical properties of silicon, while considering the contribution from the multimonolayer-equivalent QD film to the nonradiative energy transfer, which is derived with a d(-3) distance dependence. The FRET efficiencies are experimentally observed to decrease at cryogenic temperatures, which are well explained by the model considering the phonon depopulation in the indirect band-gap acceptor together with the changes in the quantum yield of the donor. These understandings will be crucial for designing FRET-enabled sensitization of silicon based high-efficiency excitonic systems using nanoemitters

    Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets

    Get PDF
    Cataloged from PDF version of article.Here, we systematically investigated the spontaneous and stimulated emission performances of solution-processed atomically flat quasi-2D nanoplatelets (NPLs) as a function of their lateral size using colloidal CdSe core NPLs. We found that the photoluminescence quantum efficiency of these NPLs decreases with increasing lateral size while their photoluminescence decay rate accelerates. This strongly suggests that nonradiative channels prevail in the NPL ensembles having extended lateral size, which is well-explained by the increasing number of the defected NPL subpopulation. In the case of stimulated emission the role of lateral size in NPLs influentially emerges both in the single- and two-photon absorption (1PA and 2PA) pumping. In the amplified spontaneous emission measurements, we uncovered that the stimulated emission thresholds of 1PA and 2PA exhibit completely opposite behavior with increasing lateral size. The NPLs with larger lateral sizes exhibited higher stimulated emission thresholds under 1PA pumping due to the dominating defected subpopulation in larger NPLs. On the other hand, surprisingly, larger NPLs remarkably revealed lower 2PA-pumped amplified spontaneous emission thresholds. This is attributed to the observation of a "giant" 2PA cross-section overwhelmingly growing with increasing lateral size and reaching record levels higher than 10(6) GM, at least an order of magnitude stronger than colloidal quantum dots and rods. These findings suggest that the lateral size control in the NPLs, which is commonly neglected, is essential to high-performance colloidal NPL optoelectronic devices in addition to the vertical monolayer control

    Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    Get PDF
    Cataloged from PDF version of article.We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green-and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs. (C) 2013 AIP Publishing LLC

    Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures

    Get PDF
    Cataloged from PDF version of article.Solution processed graphene variants including graphene oxide (GO) and reduced graphene oxide (RGO) are promising materials for potential optoelectronic applications. To date, efficiency of the excitation energy transfer into GO and RGO thin layers has not been investigated in terms of donor-acceptor separation distance. In the present work, we study nonradiative energy transfer (NRET) from CdSe/CdS quantum dots into single and/or double layer GO or RGO using time-resolved fluorescence spectroscopy. We observe shorter lifetimes as the separation distance between the QDs and GO or RGO decreases. In accordance with these lifetimes, the rates reveal the presence of two different mechanisms dominating the NRET. Here we show that excitonic NRET is predominant at longer intervals while both excitonic and nonexcitonic NRET exist at shorter distances. In addition, we find the NRET rate behavior to be strongly dependent on the reduction degree of the GO-based layers. We obtain high NRET efficiency levels of similar to 97 and similar to 89% for the closest separation of the QD-RGO pair and the QD-GO pair, respectively. These results indicate that strong NRET from QDs into thin layer GO and RGO makes these solution-processable thin films promising candidates for light harvesting and detection systems

    TiO2 assisted sensitivity enhancement in photosensitive nanocrystal skins

    Get PDF
    Solution-processable semiconductor nanocrystals (NCs) have been widely used to create novel devices for the photovoltaic, light-emission, light-detection and biosensing applications. They are good candidates especially to develope more efficient and novel optoelectronic devices owing to the high absorption cross-section, spectral tunability, deposition easiness and low cost properties. In recent years, NC integrated photodetectors have been developed to be used in large-area light-sensing applications [1]. These NC-based photodetectors have the ability to convert an optical signal to an electrical signal using the NCs as the optical absorbers. These low-cost devices were initially operated on the basis of charge collection, where an electric field imposed on the detector dissociates the photogenerated excitons into electrons and holes, in which an electric current is produced [2]. On the other hand, as an alternative device structure, we have recently developed the light-sensitive nanocrystal skin (LS-NS) [3]. These LS-NS platforms, which were fabricated over areas up to 48 cm2, are operated on the basis of photogenerated potential buildup, as opposed to conventional charge collection. In operation, close interaction of the monolayer NCs of the LS-NS with the top interfacing contact, while the bottom one is isolated using a high dielectric spacing layer, results in highly sensitive photosensing in the absence of external bias application. Furthermore, NC monolayer of the LS-NS makes the device semi-transparent with sufficient absorption, while reducing the noise generation and dark current. In our other recent work, we also reported that, by using a thick photoactive NC layer, a much lower photovoltage buildup was observed in the LS-NSs and it was attributed to the self-absorption effect [4]. In addition, we demonstrated the sensitivity increase in the LS-NSs via the absorption enhancement of NC film with the integration of plasmonic nanoparticles [5]. However, the localized plasmonic resonance band strongly limits the observed enhancement factor and the resultant operating wavelength range. Furthermore, in the absence of an external bias in the LS-NSs, each exciton tends to remain in the NC layer, where it was created, and recombine with the photogenerated holes that accumulate at the top interfacing contact, which causes also lower voltage buildup in the device. To overcome all these problems, in this study, we propose a thin TiO2 layer as the electron-accepting material and demonstrate the first account of electron transfer in NC-based light-sensitive skins, which leads to significant broadband sensitivity enhancement in the active device architecture. Here, we prove that favorable conduction band offset aids in transferring photogenerated electrons from a monolayer of NCs to an electron-accepting layer, which is ultimately useful for photosensing platforms and the next generation of light-sensing NC devices. © 2014 IEEE

    Enhanced exciton transfer from the cascaded bilayer of green- and red-emitting CdTe quantum dots into bulk silicon

    Get PDF
    We show enhanced transfer of excitons from the energy-gradient of bilayered green/red-emitting quantum dots into silicon using cascaded nonradiative energy with an overall enhancement factor of 1.3 at room temperature for solar cell sensitization. © 2013 The Optical Society

    Phonon-assisted nonradiative energy transfer from colloidal quantum dots to monocrystalline bulk silicon

    Get PDF
    Silicon is one of the most dominant materials in photovoltaics. To increase optical absorption of silicon solar cells, colloidal quantum dots (QDs) have been proposed as a good sensitizer candidate owing to their favorably high absorption cross-section and tunable emission and absorption properties. To this end, QD sensitization of silicon has previously been studied by mostly facilitating radiative energy transfer (RET) [1,2]. Although RET based sensitization has achieved a considerable increase in conversion efficiencies in silicon photovoltaics, RET is fundamentally limited due to the effective coupling problem of emitted photons to silicon. Alternatively, nonradiative energy transfer (NRET), which relies on near field dipole-dipole coupling [3], has been shown to be feasible in sensitizer-silicon hybrid systems [4-8]. Although colloidal QDs as a sensitizer have been used to facilitate NRET into silicon, the detailed mechanisms of NRET to an indirect bandgap nonluminecent material, together with the role of phonon assistance and temperature activation, have not been fully understood to date. In this study, we propose a QD-silicon nanostructure hybrid platform to study the NRET dynamics as a function of temperature for distinct separation thicknesses between the donor QDs and the acceptor silicon plane. Here, we show NRET from colloidal QDs to bulk Si using phonon assisted absorption, developing its physical model to explain temperature-dependent lifetime dynamics of NRET in these QD-Si hybrids. © 2012 IEEE

    CVD grown 2D MoS2 layers: A photoluminescence and fluorescence lifetime imaging study

    Get PDF
    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS2. µ-Raman, µ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (Figure presented.). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    Get PDF
    We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs. © 2013 AIP Publishing LLC

    Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets

    Get PDF
    There has been a strong interest in solution-processed two-dimensional nanomaterials because of their great potential in optoelectronics. Here, the absorption cross-section and molar extinction coefficient of four and five monolayer thick colloidal CdSe nanoplatelets (NPLs) having various lateral sizes are reported. The absorption cross-section of these NPLs and their corresponding molar extinction coefficients are found to strongly depend on the lateral area. An excellent agreement is observed between the experimental results and the calculated values based on the small-particle light absorption model. With these optical properties, NPLs hold great promise for optoelectronic applications. © 2015 American Chemical Society
    corecore