27 research outputs found

    Factors influencing feeding practices of extreme poor infants and young children in families of working mothers in Dhaka slums: A qualitative study

    Get PDF
    BackgroundNutritional status differs between infants and young children living in slum and non-slum conditions—infants and young children living in City Corporation slums are likely to have worse nutritional status compared to those from non-slums. Furthermore, families in slums tend to engage female labor in cash-earning activities as a survival strategy; hence, a higher percentage of mothers stay at work. However, little is known about feeding practices for infants and young children in families with working mothers in slums. This study aims to understand the factors that determine feeding practices for infants and young children living in families with working mothers in Dhaka slums.MethodsThis study adopted a qualitative approach. Sixteen In-depth Interviews, five Key Informant Interviews, and Focused Group Discussions were conducted with family members, community leaders, and program staff. Method triangulation and thematic analyses were conducted.ResultsFeeding practices for infants and young children in families with working mothers are broadly determined by mothers’ occupation, basis civic facilities, and limited family buying capacity. Although mothers have good nutritional knowledge, they negotiate between work and feeding their infants and young children. Household composition, access to cooking facilities, and poverty level were also found to be significant determining factors.ConclusionThe results suggest a trade-off between mothers’ work and childcare. The absence of alternative care support in homes and/or work places along with societal factors outweighs full benefits of project interventions. Improving alternative childcare support could reduce the burden of feeding practice experienced by working mothers and may improve nutritional outcomes

    Extension of Murray's law using a non-Newtonian model of blood flow

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate.</p> <p>Modeling</p> <p>In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. Σ<it>R</it><sup><it>c </it></sup>= <it>cste </it>with <it>c </it>= 3 is verified and is independent of <it>n</it>, the dimensionless index in the viscosity equation; <it>R </it>being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of <it>c </it>may be calculated depending on the value of <it>n</it>.</p> <p>Results</p> <p>We find that <it>c </it>varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to <it>c </it>= 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature.</p> <p>Conclusion</p> <p>It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.</p

    Numerical Flow Simulations of Blood in Arteries

    No full text

    IPSVAC – Integrated Platform for Sequence Visualization, Analysis and Comparison

    No full text
    Motivation: With the increased availability of sequence information and concomitant increase in the number of automated analysis servers, biologists today need to deal with multiple data sources and multiple software tools which use diverse methods and algorithms for analysis. For knowledge mining and hypothesis building exercises, user level intervention in terms of comparing, validating and visualizing second order features derived from the sequence data is of crucial importance. Convenient options for doing this from an integrated platform which enables the user to operate with a single input format and to retrieve parsed outputs, relevant to his research context, from different servers in customizable user defined visual formats for easy comparison and analysis are an urgent requirement for biologists in the post genomic era. The seemingly inevitable necessity of having to negotiate with heterogeneous legacy resources, which have come up because of rapid parallel developments on all fronts related to technology, approach and algorithms, constitutes the essential challenge involved. Results: IPSVAC is an integrated toolkit, which is interactive, customizable and modular. It can be used for analysis; display and storage of results, related to biological sequence data, obtained from a choice of tools which may be available publicly or which have been incorporated as an add-on module
    corecore