14,631 research outputs found

    Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    Get PDF
    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls

    Scattering of slow-light gap solitons with charges in a two-level medium

    Full text link
    The Maxwell-Bloch system describes a quantum two-level medium interacting with a classical electromagnetic field by mediation of the the population density. This population density variation is a purely quantum effect which is actually at the very origin of nonlinearity. The resulting nonlinear coupling possesses particularly interesting consequences at the resonance (when the frequency of the excitation is close to the transition frequency of the two-level medium) as e.g. slow-light gap solitons that result from the nonlinear instability of the evanescent wave at the boundary. As nonlinearity couples the different polarizations of the electromagnetic field, the slow-light gap soliton is shown to experience effective scattering whith charges in the medium, allowing it for instance to be trapped or reflected. This scattering process is understood qualitatively as being governed by a nonlinear Schroedinger model in an external potential related to the charges (the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo

    Macroscopic evidence for quantum criticality and field-induced quantum fluctuations in cuprate superconductors

    Get PDF
    We present macroscopic experimental evidence for field-induced microscopic quantum fluctuations in different hole- and electron-type cuprate superconductors with varying doping levels and numbers of CuO2_2 layers per unit cell. The significant suppression of the zero-temperature in-plane magnetic irreversibility field relative to the paramagnetic field in all cuprate superconductors suggests strong quantum fluctuations due to the proximity of the cuprates to quantum criticality.Comment: 3 figures. To appear in Phys. Rev. B, Rapid Communications (2007). For correspondence, contact: Nai-Chang Yeh (e-mail: [email protected]

    First- and Second-Order Phase Transitions, Fulde-Ferrel Inhomogeneous State and Quantum Criticality in Ferromagnet/Superconductor Double Tunnel Junctions

    Full text link
    First- and second-order phase transitions, Fulde-Ferrel (FF) inhomogeneous superconducting (SC) state and quantum criticality in ferromagnet/superconductor/ferromagnet double tunnel junctions are investigated. For the antiparallel alignment of magnetizations, it is shown that a first-order phase transition from the homogeneous BCS state to the inhomogeneous FF state occurs at a certain bias voltage V∗V^{\ast}; while the transitions from the BCS state and the FF state to the normal state at Vc% V_{c} are of the second-order. A phase diagram for the central superconductor is presented. In addition, a quantum critical point (QCP), % V_{QCP}, is identified. It is uncovered that near the QCP, the SC gap, the chemical potential shift induced by the spin accumulation, and the difference of free energies between the SC and normal states vanish as % |V-V_{QCP}|^{z\nu} with the quantum critical exponents zν=1/2z\nu =1/2, 1 and 2, respectively. The tunnel conductance and magnetoresistance are also discussed.Comment: 5 pages, 4 figures, Phys. Rev. B 71, 144514 (2005

    Structure formation in binary colloids

    Full text link
    A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.Comment: revtex, 4 pages, figures available from authors due to size problem

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1−x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres
    • …
    corecore