23,150 research outputs found

    Analytical and experimental investigation of circulation control by means of a turbulent Coanda jet

    Get PDF
    An analytical and experimental investigation of circulation control on a circular cylinder by means of tangential blowing (Coanda effect) is presented. The analytical method developed has also been used to estimate the blowing coefficients required for achieving potential flow on airfoils with flaps. The analysis is presented for conditions for which the flow in the boundary layer ahead of the jet exit is turbulent. The turbulent boundary layer and the jet layer on the upper surface, and the turbulent boundary layer on the lower surface are computed by a multi-strip integral method. The region of integration is between the correponding transition and separation points on each surface. Longitudinal curvature effects, which give rise to a radial pressure gradient across the jet layer and to an additional adverse tangential pressure gradient just upstream of the separation point, are included in the jet layer analysis in an approximate manner. The longitudinal curvature effect is found to have a pronounced influence on the separation of the jet layer

    Backward Tamm states in left-handed metamaterials

    Get PDF
    We study the electromagnetic surface waves localized at an interface separating a one-dimensional photonic crystal and left-handed metamaterial, the so-called surface Tamm states. We demonstrate that the metamaterial allows for a flexible control of the dispersion properties of surface states, and can support the Tamm states with a backward energy flow and a vortex-like structure.Comment: 3 pages, 5 figure

    MHD boundary layers with non-equilibrium ionization and finite rates Quarterly report, 1 Jun. - 1 Sep. 1969

    Get PDF
    Ionization and recombination rates in boundary layer of magnetohydrodynamic channel electrod

    Average and worst-case specifications of precipitating auroral electron environment

    Get PDF
    The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts

    Robustness of One-Dimensional Photonic Bandgaps Under Random Variations of Geometrical Parameters

    Get PDF
    The supercell method is used to study the variation of the photonic bandgaps in one-dimensional photonic crystals under random perturbations to thicknesses of the layers. The results of both plane wave and analytical band structure and density of states calculations are presented along with the transmission cofficient as the level of randomness and the supercell size is increased. It is found that higher bandgaps disappear first as the randomness is gradually increased. The lowest bandgap is found to persist up to a randomness level of 55 percent.Comment: Submitted to Physical Review B on April 8 200

    Gigantic transmission band edge resonance in periodic stacks of anisotropic layers

    Full text link
    We consider Fabry-Perot cavity resonance in periodic stacks of anisotropic layers with misaligned in-plane anisotropy at the frequency close to a photonic band edge. We show that in-plane dielectric anisotropy can result in a dramatic increase in field intensity and group delay associated with the transmission resonance. The field enhancement appears to be proportional to forth degree of the number N of layers in the stack. By contrast, in common periodic stacks of isotropic layers, those effects are much weaker and proportional to N^2. Thus, the anisotropy allows to drastically reduce the size of the resonance cavity with similar performance. The key characteristic of the periodic arrays with the gigantic transmission resonance is that the dispersion curve omega(k)at the photonic band edge has the degenerate form Delta(omega) ~ Delta(k)^4, rather than the regular form Delta(omega) ~ Delta(k)^2. This can be realized in specially arranged stacks of misaligned anisotropic layers. The degenerate band edge cavity resonance with similar outstanding properties can also be realized in a waveguide environment, as well as in a linear array of coupled multimode resonators, provided that certain symmetry conditions are in place.Comment: To be submitted to Phys. Re

    Effect of Strain Relaxation on Magnetotransport properties of epitaxial La_0.7Ca_0.3MnO_3 films

    Get PDF
    In this paper, we have studied the effect of strain relaxation on magneto-transport properties of La_0.7Ca_0.3MnO_3 epitaxial films (200 nm thick), which were deposited by pulsed laser deposition technique under identical conditions. All the films are epitaxial and have cubic unit cell. The amount of strain relaxation has been varied by taking three different single crystal substrates of SrTiO_3, LaAlO_3 and MgO. It has been found that for thicker films the strain gets relaxed and produces variable amount of disorder depending on the strength of strain relaxation. The magnitude of lattice relaxation has been found to be 0.384, 3.057 and 6.411 percent for film deposited on SrTiO_3, LaAlO_3 and MgO respectively. The films on LaAlO_3 and SrTiO_3 show higher T_{IM} of 243 K and 217 K respectively as compared to T_{IM} of 191 K for the film on MgO. Similarly T_C of the films on SrTiO_3 and LaAlO_3 is sharper and has value of 245 K and 220 K respectively whereas the TC of the film on MgO is 175 K. Higher degree of relaxation creates more defects and hence TIM (T_C) of the film on MgO is significantly lower than of SrTiO_3 and LaAlO_3. We have adopted a different approach to correlate the effect of strain relaxation on magneto-transport properties of LCMO films by evaluating the resistivity variation through Mott's VRH model. The variable presence of disorder in these thick films due to lattice relaxation which have been analyzed through Mott's VRH model provides a strong additional evidence that the strength of lattice relaxation produces disorder dominantly by increase in density of defects such as stacking faults, dislocations, etc. which affect the magneto-transport properties of thick epitaxial La_0.7Ca_0.3MnO_3 films
    corecore