23,150 research outputs found
Analytical and experimental investigation of circulation control by means of a turbulent Coanda jet
An analytical and experimental investigation of circulation control on a circular cylinder by means of tangential blowing (Coanda effect) is presented. The analytical method developed has also been used to estimate the blowing coefficients required for achieving potential flow on airfoils with flaps. The analysis is presented for conditions for which the flow in the boundary layer ahead of the jet exit is turbulent. The turbulent boundary layer and the jet layer on the upper surface, and the turbulent boundary layer on the lower surface are computed by a multi-strip integral method. The region of integration is between the correponding transition and separation points on each surface. Longitudinal curvature effects, which give rise to a radial pressure gradient across the jet layer and to an additional adverse tangential pressure gradient just upstream of the separation point, are included in the jet layer analysis in an approximate manner. The longitudinal curvature effect is found to have a pronounced influence on the separation of the jet layer
Backward Tamm states in left-handed metamaterials
We study the electromagnetic surface waves localized at an interface
separating a one-dimensional photonic crystal and left-handed metamaterial, the
so-called surface Tamm states. We demonstrate that the metamaterial allows for
a flexible control of the dispersion properties of surface states, and can
support the Tamm states with a backward energy flow and a vortex-like
structure.Comment: 3 pages, 5 figure
MHD boundary layers with non-equilibrium ionization and finite rates Quarterly report, 1 Jun. - 1 Sep. 1969
Ionization and recombination rates in boundary layer of magnetohydrodynamic channel electrod
Average and worst-case specifications of precipitating auroral electron environment
The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts
Robustness of One-Dimensional Photonic Bandgaps Under Random Variations of Geometrical Parameters
The supercell method is used to study the variation of the photonic bandgaps
in one-dimensional photonic crystals under random perturbations to thicknesses
of the layers. The results of both plane wave and analytical band structure and
density of states calculations are presented along with the transmission
cofficient as the level of randomness and the supercell size is increased. It
is found that higher bandgaps disappear first as the randomness is gradually
increased. The lowest bandgap is found to persist up to a randomness level of
55 percent.Comment: Submitted to Physical Review B on April 8 200
Gigantic transmission band edge resonance in periodic stacks of anisotropic layers
We consider Fabry-Perot cavity resonance in periodic stacks of anisotropic
layers with misaligned in-plane anisotropy at the frequency close to a photonic
band edge. We show that in-plane dielectric anisotropy can result in a dramatic
increase in field intensity and group delay associated with the transmission
resonance. The field enhancement appears to be proportional to forth degree of
the number N of layers in the stack. By contrast, in common periodic stacks of
isotropic layers, those effects are much weaker and proportional to N^2. Thus,
the anisotropy allows to drastically reduce the size of the resonance cavity
with similar performance. The key characteristic of the periodic arrays with
the gigantic transmission resonance is that the dispersion curve omega(k)at the
photonic band edge has the degenerate form Delta(omega) ~ Delta(k)^4, rather
than the regular form Delta(omega) ~ Delta(k)^2. This can be realized in
specially arranged stacks of misaligned anisotropic layers. The degenerate band
edge cavity resonance with similar outstanding properties can also be realized
in a waveguide environment, as well as in a linear array of coupled multimode
resonators, provided that certain symmetry conditions are in place.Comment: To be submitted to Phys. Re
Effect of Strain Relaxation on Magnetotransport properties of epitaxial La_0.7Ca_0.3MnO_3 films
In this paper, we have studied the effect of strain relaxation on
magneto-transport properties of La_0.7Ca_0.3MnO_3 epitaxial films (200 nm
thick), which were deposited by pulsed laser deposition technique under
identical conditions. All the films are epitaxial and have cubic unit cell. The
amount of strain relaxation has been varied by taking three different single
crystal substrates of SrTiO_3, LaAlO_3 and MgO. It has been found that for
thicker films the strain gets relaxed and produces variable amount of disorder
depending on the strength of strain relaxation. The magnitude of lattice
relaxation has been found to be 0.384, 3.057 and 6.411 percent for film
deposited on SrTiO_3, LaAlO_3 and MgO respectively. The films on LaAlO_3 and
SrTiO_3 show higher T_{IM} of 243 K and 217 K respectively as compared to
T_{IM} of 191 K for the film on MgO. Similarly T_C of the films on SrTiO_3 and
LaAlO_3 is sharper and has value of 245 K and 220 K respectively whereas the TC
of the film on MgO is 175 K. Higher degree of relaxation creates more defects
and hence TIM (T_C) of the film on MgO is significantly lower than of SrTiO_3
and LaAlO_3. We have adopted a different approach to correlate the effect of
strain relaxation on magneto-transport properties of LCMO films by evaluating
the resistivity variation through Mott's VRH model. The variable presence of
disorder in these thick films due to lattice relaxation which have been
analyzed through Mott's VRH model provides a strong additional evidence that
the strength of lattice relaxation produces disorder dominantly by increase in
density of defects such as stacking faults, dislocations, etc. which affect the
magneto-transport properties of thick epitaxial La_0.7Ca_0.3MnO_3 films
- …
