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The chiral polyisoprenoid motif has been identified in various natural products such as vitamin 

E, chlorophyll-d, and -mannosyl phosphomycoketide.  This motif features stereocenters bearing 

branched methyl groups at every fourth carbon of a long alkyl chain.  Due to the lack of function 

group, assigning the configurations of these structures is difficult.   

Herein, we describe the fluorous mixture synthesis (FMS) of the 4S,8S,12S-,  4S,8R,12S-, 

4R,8S,12S-, and 4R,8R,12S-trimethylnonadecanol isomers.  The FMS features a new family of 

ultra-light fluorous O-phenyl thionocarbonate tags and employees the most efficient fluorous 

tagging strategy to date.  The analyses of these four isomers were found to exhibit small but 

reliable differences in 1H and 13C NMR spectra.  Furthermore, these chemical shifts of the 

branched methyl groups were diagnostic of relative configurations.  By deducing the relative 

relationship between configuration and chemical shift, we developed predictions of 4,8,12,16-

tetramethyltricoanol, and 4,8,12,16,20-pentamethyl-heptacosanol.     
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1.0  INTRODUCTION 

1.1 FLUOROUS MIXTURE SYNTHESIS (FMS) 

Fluorous mixture synthesis (FMS) is a solution-phase technique that was introduced by Curran 

and coworkers in 2001.1 FMS relies on the ability of fluorous stationary phases to separate 

molecules by fluorine content during fluorous HPLC experiments.1   

A typical FMS takes place in four stages, 1) pre-mixing; 2) mixture synthesis; 3) 

demixing; 4) and detagging (Scheme 1.1).1 During the pre-mixing stage, individual reactions are 

carried out in parallel, and each member of a series of substrate (S1‒Sn) is tagged with a specific 

fluorous tag (F1‒Fn).  The tagged molecules (S1F1‒SnFn) are then mixed together (M1) and 

carried through a sequence of reactions in the mixture synthesis stage.  During this stage, each 

encoded molecule (S1F1‒SnFn) within a mixture (M1) undergoes transformations to arrive at the 

final mixture (M2).  M2 is then separated by fluorous HPLC (F-HPLC) into the constituent 

components (P1F1‒PnFn) based on the fluorine content of the tag(s) in the demixing stage.  The 

fluorous tag from each component is removed during the detagging stage to access the target 

molecules (P1‒Pn).    
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Scheme 1.1. Schematic flowchart of FMS 

 

Similar to other mixture synthesis techniques such as solid phase mixture synthesis, FMS 

has often been used in library synthesis.  Unlike the solid phase mixture synthesis, however, 

FMS is compatible with all solution-phase synthetic and analytical methods.2 

1.1.1 Fluorous Separation by Fluorous-HPLC 

At the heart of FMS is the fluorous demixing, which is defined as the separation and isolation of 

individual fluorinated molecule based on its fluorine content using silica gel with a fluorocarbon 

stationary phase.1  This process is usually carried out by HPLC with a fluorous column.  

Fluorous separation is different from normal phase or reverse phase separation because of the C-

F bonds in the stationary phase contain significant dipole character, which interact strongly with 

halogenated molecules.3  

The strong fluorine-fluorine interaction between a fluorinated molecule and a florous 

column was first observed by de Galan and coworkers in 1980, when previously inseparable 

benzene and monofluorobenzene (by reverse phase columns RP-3 and RP-10) were separated by 

heptadecafluorodecyl dimethylsilyl bounded (RP-F10) column (Figure 1.1).4 In a follow-up 

study, de Galan and coworkers further demonstrated the characteristic of strong fluorine-fluorine 

interactions between mobile and stationary phases with the sequential separation of five different 

fluorobenzenes by fluorine content (Figure 1.2).5 
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Figure 1.1. Stationary phase of the heptadecafluorodecyl dimethylsilyl (RP-F10) column 

 

Figure 1.2. Fluorous separation of fluorinated benzene by RP-F10 column5 

 

The first use of F-HPLC in FMS was reported by Curran and coworkers in 2001 to 

separate a mixture (M-3) of the two mappicine quasiisomers (R)-3 and (S)-3 with TIPS tags 

(TIPSF13and TIPSF17, respectively) by a fluorous column (Scheme 1.2).  The superscripts F13 

and F17 refer to the corresponding fluorine content in the perfluoroalkyl chain.  Upon subjecting 

M-3 to F-HPLC with a FluofixTM column, (R)-3, which had the lower fluorine content, was 

eluted first.  This was followed by (S)-3 with the higher fluorine content.  Removal of the 

fluorous TIPS tag on each molecule by desilylation after demixing gave the two enantiomers of 

mappicine.6       

Scheme 1.2. The first application of fluorous HPLC in FMS  
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1.1.2 Uses of FMS in Natural Product Synthesis 

One of the most popular uses of FMS is in natural product library synthesis.  In particular, 

molecules with structures that are difficult to assign have been targeted.7 For example, in order to 

assign the stereocenters in murisolin A, 28 of the 64 possible stereoisomers were synthesized 

through FMS by Dr. Q. Zhang and coworkers in 2005 (Figure 1.3).7c A synthetic effort of this 

magnitude by conventional parallel synthesis would take a substantially longer time to 

accomplish.   

Figure 1.3. Two-dimentional structure of murisolin A 

 

The fluorous tags in FMS of natural products have so far been based on protecting groups 

of alcohols or amines.  Figure 1.4 shows some of the most common fluorous tags, including F-

TIPS, F-PMB, F-Fmoc, F-Cbz, and F-Boc.2 These fluorous tags function not only as protecting 

groups, but also encode the specific configurations of the molecules as well as assist in F-HPLC 

separations.   

Figure 1.4. Common fluorous tags 
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1.1.3 Fluorous Tagging Strategies 

The tagging strategy of each FMS often depends on the individual target structure and 

synthetic design, but in general there are three different types of tagging strategies to date: 1) 

single tagging; 2) double tagging; 3) and orthogonal double tagging.   

The single tagging strategy uses a single tagging site on the molecule to encode the 

specific configurations of all target isomers in a FMS.  Two examples of this tagging strategy are 

FMS of murisolin A and pinesaw fly sex pheromone.7c,8 In the FMS of murisolin A, tagging of 

the C20 hydroxy group with four different FPMB groups encoded the four quasiisomers of 

protected murisolin A as a mixture M-4.  In the FMS of the pinesaw fly sex pheromone, tagging 

of the C2 hydroxy group with four different FPMB groups encoded for the four quasiisomers of 

protected pinesaw fly sex pheromone as a mixture M-5 (Figure 1.5).  The mixtures (M-4 and M-

5) were subjected to F-HPLC to separate the constituting quasiisomers based on fluorine content.  

The respective isomers of the natural products were obtained after the deprotection/detagging of 

the protected quasiisomers by Pd/C catalyzed hydrogenolysis.  

Figure 1.5. Examples of single tagging FMS strategy  

 

The double tagging strategy uses two different tagging sites to encode the specific 

configurations of the target isomers in a given FMS.7b,7d,9 For example, in the FMS of 

passifloricin the hydroxy groups at C7 and C9 positions were tagged with three different fluorous 
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tags (TIPSF0, TIPSF7, and TIPSF9) to encode the four quasiisomers of protected passifloricin in 

M-6.  Each TIPSF tagged quasiisomer contained a different number of fluorine atoms for F-

HPLC demixing.  Depending on the complexity and synthetic design of the target molecule, the 

number of fluorous tag in a double tagging FMS can vary from two to four.  For instance, the 

FMS of SCH725674 only used two different fluorous tags (TIPSF0 and TIPSF5) to encode four 

quasiisomers of protected SCH725674 in M-7,9c while the FMS of cytostatin used four different 

fluorous tags (TIPSF0, TIPSF9, TIPSF13, and TIPS17) to encode four quasiisomers of protected 

cytostatin precursor in M-8 (Figure 1.6).10 The double tagging strategy typically allows for re-

use of the same fluorous tag as seen in the FMS of passifloricin with TIPSF7 tag and the FMS of 

SCH725674 with the TIPSF5 tag, as long as each quasiisomer is encoded with a unique number 

of fluorine atoms.   

Figure 1.6. Examples of double tagging FMS strategy 
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The orthogonal double tagging strategy also uses two different tagging sites to encode the 

stereo-information of the isomers, but instead of using only one class of tag, two different classes 

of tags are used.  For example, in the second generation FMS of murisolin A,7b,9a fluorous and 

oligoethylene glycol OEG tags were used.  OEG tags are a class of polarity-based solution phase 

mixture synthesis tag developed by Wilcox and coworkers.11 In this synthesis, the PMBF tags 

were used to code for four quasiisomers at C20 position in fragment M-9 and the OEG tags were 

used to code for four quasiisomers at the C4 position in fragment M-10.  After connecting the 

two fragments via Julia-Kolcienski olefination followed by hydrogenation, the final mixture M-

11 contained 16 quasiisomers of protected murisolin A (Scheme 1.3).  The mixture M-11 was 

first subjected to flash chromatography to separate four fractions based on polarity of the OEG 

tags from OEG1 (least polar) to OEG4 (most polar).  Each fraction was then subjected to F-

HPLC to separate each quasiisomer based on the number of fluorine atom.  Following detagging, 

a total of 16 isomers were obtained from the FMS.   

Scheme 1.3. Example of the orthogonal double tagging FMS strategy 
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One way to judge the efficiency of an FMS is by the total number of fluorine atoms used 

to encode a library of isomers.  The fewer fluorines used, the more efficient the route.  To date, 

the most efficient FMS was the library synthesis of SCH725674 by Dr. Moretti and coworkers, 

which used a total of 30 fluorine atoms to encode four stereoisomers.9c In contrast, typical use of 

four different single tags such as the FMS of murisolin needed 44 fluorine atoms.  Double 

tagging strategy used in the FMS of passifloricin and cytostatin needed 46 and 72 fluorine atoms 

respectively.  

1.1.4 Current Limitations of FMS 

Despite the convenience and efficiency of FMS in natural product library syntheses, there are at 

least two current limitations.  The first limitation is the large number of fluorine atoms 

introduced by the perfluoroalkyl tags.  Each increase in perfluoroalkyl chain length adds two 

additional fluorine atoms to the tag.  As the number of fluorine atom increases, the molecular 

weight and the F-HPLC demixing time also increase.  This causes isolation problems because of 

the prolonged retention time on the fluorous column.  Additionally, the solubility of highly 

fluorinated molecules in non-fluorinated organic solvents decreases with increasing fluorine 

contents.  Typically, 60% fluorine by weight is considered the threshold for good solubility.12 

Currently, perfluoroalkyl groups are the only class of tag in FMS.  It would be desirable to 

develop other class of fluorous tags, especially ones with fewer fluorine atoms. 

The second limitation is regarding the type of natural products that usually can be 

targeted.  Because all current fluorous tags are based on protecting groups of hydroxy and amino 

groups, to date the molecules targeted by FMS all contained either functionality for fluorous 

tagging (Figure 1.7).  It would be advantageous to develop non-protecting group based tags, such 
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as traceless tags, to expand the scope of FMS into natural products without convenient handles 

for tagging.     

Figure 1.7. Recently completed FMS targets based on hydroxy group tagging 

 

1.2 NATURAL PRODUCTS CONTAINING CHIRAL SATURATED 

POLYISOPRENOID MOTIFS  

One of the most common types of chiral isoprenoid motifs is a long alkyl chain with asymmetric 

methyl branching at every fourth carbon.  This substructure can be found in a variety of natural 

products including vitamins K and E, chlorophyll, -mannosyl phosphomycoketide, and pinesaw 

fly pheromones (Figure 1.8).13 Despite the structural similarities between the polyisoprenoid side 

chains, the biosynthetic pathways of these natural products are very different.  The side chains in 

vitamin K and E, and chlorophyll come from the non-mevalonate pathway, and the side chain of 

-mannosyl phosphomycoketide comes from a polyketide synthase pathway.13d,14 
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Figure 1.8. Natural products with polyisoprenoid motif highlighted in red 

 

Because of the lack of functionality on the alkyl chain, the asymmetric synthesis and the 

identification of the methyl branch configurations are challenging.15 While methods to efficiently 

synthesize these asymmetric polyisoprenoid structures have advanced considerably since the 

early 1980s,13a,13c,13e,15-16 to date, there is no established method for determining the methyl 

branch configurations directly by spectroscopic means.  The standard way to identify the methyl 

branch configurations in a natural product is by a combination of optical rotation comparison 

with a library of synthetic isomers.17 

1.2.1 Vitamin E 

-Tocopherol 12 (vitamin E) is a common natural product first isolated from vegetable oil in 

1922.13e It is an antioxidant best known to protect polyunsaturated fatty acids and cell 

membranes from radical damage.13b The structure of -tocopherol consists of a shikimate-

derived aromatic ring connected to a chiral saturated polyisoprenoid side chain with 2R,4'R and 

8'R stereocenters (Figure 1.9).  Although the natural vitamin E is found to contain only the 
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2R,4'R,8'R--tocopherol,17 tests have shown that the 2R,4'RS,8'RS--tocopherol mixture exhibits 

comparable bioactivity,18 i.e. the 4' and 8' methyl configurations on the side chain do not affect 

the bioactivity.   

Figure 1.9. Structure of -tocopherol (vitamin E) 

 

The determination of the methyl branch configurations of the natural -tocopherol was 

highly sought after between 1980 and 1990.5,16b,17,19 In 1981, Cohen and coworkers reported 

combined GC analysis with optical rotation to confirm the methyl branch configurations of the 

natural -tocopherol to be exclusively 2R,4'R,8'R.16b In the same year, Bremser and coworkers 

showed that the natural (2R,4'R,8'R)-12 and the synthetic (2S,4'R,8'S)-12 could be distinguished 

by the C2', C3', C5', C6', C7', and C8' signals  in 13C NMR spectra (Figure 1.10).20  

Figure 1.10. Selected 13C NMR spectra of (2R,4'R,8'R)-12, (2S,4'R,8'S)-12, and stereorandom 12 

 

(taken from ref. 20 with permission) 
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In 1988 Ingold and coworkers published an in-depth 13C NMR study detailing how the 

methyl branch configurations in -tocopherol and related molecules influence chemical shifts in 

the rest of the molecule.19a They observed the maximum differences in chemical shift per bond at 

the carbon signals one, three, and five bonds away from the stereocenters (C2, C4', and C8').  

Based on this observation, they postulated that “at a low energy, chain extended conformers, the 

interaction between two nearest asymmetric carbons is likely to occur by a relay type 

mechanism” through interactions between the methyl branch carbons and the hydrogen atoms of 

the middle carbon.19a For example, the interaction between the 4' and 8' carbons is likely to 

involve primarily the methyl groups attached to the 4' and 8' carbons relay by the hydrogen 

atoms on the 6' carbon (Figure 1.11).  This thorough analysis of vitamin E provides some 

insights into how chirality may propagate through the bonds in a polyisoprenoid system and 

provided the basis for future analyses of polyisoprenoid natural products.21  

Figure 1.11. Illustration of the “relay” type mechanism discussed by Ingold and coworkers 

 

1.2.2 Manosyl Phosphomycoketide (MPM) 

-D-Mannosyl phosphomycoketides (MPMs) 1 and 2 (Figure 1.12) are potent 

mycobacterial antigens isolated by Moody and coworkers in 2000 from the cell walls of 

Mycobacterium tuberculosis and Mycobacterium avium.13d Similar to the structure of vitamin E, 

the structure of MPM-1 and MPM-2 contain a polyisoprenoid motifs of five isoprenoid units 

connected to a phosphate sugar of -mannosyl linkage.  In 2002, Crich and coworkers confirmed 
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the -mannosyl linkage by comparing the MS fragmentation patterns of  -MPM-2 with a 

stereorandom isoprenoid side chain and the natural -MPM-2.22  

Figure 1.12. Structure of -mannosyl phosphomycoketide (MPM) 1 and 2 

 
The exceptional potency of MPMs comes from the strong binding of their hydrophobic 

tails with the deep hydrophobic pocket of the CD1c antigen presenting protein on the antigen 

presenter cell (APC), which leaves the hydrophilic phosphate sugar group free to interact with 

the T-cell receptor protein on T-cell (Figure 1.13).23  

Figure 1.13. CD1‒glycolipid antigen‒T-cell receptor interactions binding model 

 

(taken from ref. 23 with permission) 

In 2006, Feringa and coworkers postulated that all the methyl stereocenters have the same 

configuration because they are introduced by the same polyketide synthase through an iterative 

action.24 Feringa and coworkers then accomplished a stereoselective total synthesis of the all-S 

isomer of MPM-1 by using a highly convergent approach with four chiral building blocks 13, 14, 

15, and 16.25 Aside from 16, all other building blocks contained branched methyl groups 
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introduced by an asymmetric conjugate addition reaction developed by Feringa and coworkers.26 

Each of the building blocks were connected by Julia-Kocienski olefination27 followed by Pd/C 

catalyzed hydrogenation to give the all-S isoprenoid alcohol 17.  Coupling of 17 with the 

mannosyl phosphate building block 16 followed by deacetylation to complete the synthesis of 

the all-S MPM-1 (Scheme 1.4).   

Scheme 1.4. Total synthesis of all-S MPM-1 by Feringa and coworkers 

 

The synthetic all-S MPM-1 was shown to elicit similar level of T-cell response as the 

natural MPM-1, while the stereorandom MPM-2 showed 20‒40 folds lower response than the 

natural MPM-2.  Additionally, a crystal structure of CD1c in complex with MPM was recently 

reported by Scharf and coworkers to show the synthetic all-S MPM binding deeply inside the 

hydrophobic groove of the CD1c protein.28  Based on the above evidence, the natural product 

was assigned to have the all-S branch methyl configuration.25,29 To date, however, only one 

isomer has been tested.  Could there be other isomers that have similar activity to the natural 
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product?  Ideally, it would be better to develop analytical or spectroscopic tools for the 

assignment.  

1.2.3 Project Design and Overview: Identifying Branched Methyl Group Configurations 

in Polyisoprenoid Systems by NMR Spectroscopy 

While structurally simpler polyisoprenoid molecules like vitamin E and its isomers can now be 

differentiated spectroscopically, more complex molecules like MPM have not been fully studied.  

In vitamin E, the repeating isoprenoid unit CH2CH2CH(CH3)CH2 occurs only twice, whereas in 

MPM it occurs five times.  Will the stereoisomers of MPM side chain have different spectra or 

not?  Can the structures be assigned from spectra?   

To begin answering these questions, a study of how the relative methyl configuration 

affects chemical shift in a shorter polyisoprenoid system such as 4,8,12-trimethyl-nonadecanol 

was carried out because it is structurally similar to the side chain of MPM-1, yet it only contains 

three repeating isoprenoid units.  As shown in Figure 1.14, the structures of the MPM-1 side 

chain and 4,8,12-trimethylnonadecanol both contain two end methyl groups (end-1 and end-2), 

the only difference between the two molecules is the number of saturated isoprene units in the 

middle.  It was hypothesized that one could develop a tool to identify the branched methyl group 

configurations of the isomers of 4,8,12-trimethylnonadecanol spectroscopically, we may be able 

to extend the method towards more complex systems such as the side chain of MPM-1. 
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Figure 1.14. A 2D comparison of the side chain of MPM-1 and 4,8,12-trimethylnonadecanol 

 

1.3 INITIAL ITERATIVE FMS APPROACH TOWARDS FOUR ISOMERS OF 

4,8,12-TRIMETHYLNONADECANOL 

The primary objectives of this project were to first synthesize four isomers of 4,8,12-

trimethylnonadecanol and then develop spectroscopic tools to characterize the branched methyl 

group configurations of these polyisoprenoids.  The plan was to utilize FMS to rapidly access the 

4S,8S,12S-, 4S,8R,12S-, 4R,8S,12S-, and 4R,8R,12S-trimethylnonadecanols (Figure 1.15), then 

thoroughly characterize them by 1H and 13C NMR spectroscopy.  Would the spectra of these four 

isomers be different?  Would there be a decipherable relationship between the branched methyl 

group configurations and their respective chemical shifts?  Could an NMR-based method be 

developed to identify the configurations of these branched methyl groups, and can it be applied 

to higher order polyisoprenoid molecules? 

Figure 1.15. The four target isomers of 4,8,12-trimethylnonadecanol 
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1.3.1 Synthetic Design 

The initial synthetic effort towards FMS of 4,8,12-trimethylnonadecanol was started by Dr. 

Eveline Kumli,30 and her first challenge was to design an FMS synthesis of a target molecule 

without any functional group for fluorous tagging.  Dr. Kumli proposed the use of “auxiliary 

functional groups”, which are hydroxy groups that are used to append different fluorous tags 

during the FMS and cleaved off at the end of the synthesis by global deoxygenation (Scheme 

1.5).   

Scheme 1.5. The utility of auxiliary hydroxy for the FMS of 4,8,12-trimethylnonadecanol 

 

The initial FMS approach of 4,8,12-trimethylnonadecanol contained an en route double 

tagging strategy of three iterations of Brown crotylation,31 fluorous xanthate tagging, cross-

metathesis,32 and hydrogenation followed by global deoxygention.  This approach was 

abandoned when cross-metathesis of 18 and 19 did not give the desired product 20, but instead 

gave diene 20' through a Chugeav elimination (Scheme 1.6).33 Apparently the cross-metathesis 

reaction worked in the presence of xanthate functionality, but the product was not stable.   

Scheme 1.6. Observed Chugeav elimination during cross-metathesis by Dr. Kumli 
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To circumvent this unwanted elimination reaction, Dr. Kumli changed from the fluorous 

xanthate tag to the more stable fluorous TIPS (TIPSF) to complete the FMS.  This new approach 

also added two extra steps (desilylation and hydroxy activation) to the synthesis at the end.  The 

fluorous TIPS tags are herein represented in TIPSFn form, the superscript F indicates it contains a 

fluorous tag, and n indicates the number of fluorine atoms on the tag.  In case of a fluorous 

mixture, the tags are represented in TIPSFn,Fm form, the two different tags are separated by a 

comma.  

1.3.2 Initial FMS of 4,8,12-Trimethylnonadecanol with TIPSF tags 

The first cycle of the FMS of 4,8,12-trimethylnonadecanol started with Brown crotylation of 

heptanal with (‒)-(Z)-crotyldiisopino-campheylborane (Brown reagent)31 followed by TIPS 

protection to give alkene 21 in 74% over 2 steps.  Cross-metathesis of 21 with crotonaldehyde 

gave ,-unsaturated aldehyde 22 in 66% yield.  This was subjected to Pd-C catalyzed 

hydrogenation to form aldehyde 23.  The overall yield of the first iteration was 47% (Scheme 

1.7). 

Scheme 1.7. First cycle of the initial approach by Dr. Kumli 

 

At the start of the second cycle of the FMS, aldehyde 23 was split into two portions and 

reacted with either (‒)- or (+)- (Z)-Brown reagent in the crotylation step.  The resulting allylic 
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alcohols were tagged with TIPSF0 and TIPSF9 tag respectively.  The fluorous-tagged allylic 

alcohols were then mixed and subjected to cross-metathesis then hydrogenation to afford mixture 

aldehyde M-24.  The overall yield of the second cycle was 36%.  The third cycle was completed 

in the same fashion as the second cycle by splitting followed by separate crotylations.  The 

resulting allylic alcohols were tagged with TIPSF0 and TIPSF13 respectively.  At the end of the 

third cycle, aldehyde M-25 was reduced to alcohol M-26 with DIBAL-H.   Alcohol M-26 could 

not be demixed, because it lacked UV absorption for detection.  Dr. Kumli then converted the 

primary alcohol to a benzoate ester to provide UV-absorbance for HPLC detection.  Fluorous 

HPLC demixing of benzoate protected alcohol M-27 with a FluoroFlashTM (PF-C8) columan 

successfully yielded four quasiisomers (Scheme 1.8).   

Scheme 1.8. Second and third FMS cycles by Dr. Kumli 

 

The final deoxygenation was first evaluated on the mixture M-27.  Desilylation of M-27 

gave triol M-28 in 99% yield.  However, hydroxy activation of triol M-28 could not be achieved 

in good yield by tosylation, thionocarbonate or xanthate formation.34,35,36  The subsequent global 

deoxygenation step was never successfully performed (Scheme 1.9). 
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Scheme 1.9. Simultaneous hydroxy activation of M-26 

 

1.3.3 Conclusions from The Initial Synthesis 

Dr. Kumli was able to demonstrate the utility of FMS by rapidly synthesizing a mixture of four 

TIPSF-protected quasiisomers M-27 through three cycles of Brown crotylation, TIPS tagging, 

cross-metathesis and hydrogenation.  This FMS highlighted the first use of auxiliary hydroxy 

groups for fluorous tagging in a molecule lacking either hydroxyl or amino groups.  The overall 

yields per cycle varied from 38% to 48%.   

The work also identified two major problems that needed to be resolved before a 

stereoisomer library of 4,8,12-trimethylnonadecanol could be made.  First, the yields per cycle 

(38% to 48%) were not consistently high.  Second, the simultaneous activation of multiple 

hydroxy groups was not accomplished, so the subsequent global deoxygenation steps were 

unsolved problems.   
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2.0  NEW ITERATIVE APPROACH TOWARDS FMS OF FOUR ISOMERS OF 

4,8,12-TRIMETHYLNONADECANOL 

2.1 THE REVISED ITERATIVE APPROACH 

This new approach was developed to address two main problems: 1) to improve the 

yields and consistency per cycle, and 2) to circumvent the global deoxygenation problems.  Since 

the global deoxygenation problems began at the multiple hydroxy groups activation, the 

auxiliary hydroxy groups were tagged with radical labile fluorous tags en route during each 

cycle.  This new approach would avoid the activation all hydroxy groups at once and also allow 

for global deoxygenation directly after the last cycle ends.  O-Phenyl thionocarbonate35 based 

fluorous tags were chosen because they can be conveniently appended to a hydroxy group by a 

simple (thiono)acylation reaction and can be readily cleaved (Scheme 2.1).  Additionally, they 

also possess UV-absorbance, which aids in fluorous HPLC demixing.  To ensure the success of 

this new approach, all reactions per cycle (crotylation and carbonylation) were first examined for 

compatibility with the O-phenyl thionocarbonate functionality (Scheme 2.2).     

Scheme 2.1. O-phenyl thionocarbonate tag 
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Scheme 2.2. The new approach with O-phenyl thionocarbonate tags 

 

2.2 CROTYLATION REACTIONS  

The first goal of the synthesis was to identify a suitable crotylation reaction with high yields and 

high stereoselectivity. Common crotylation reactions Brown crotylation31 and Roush 

crotylation37 were assessed with commercially available heptanal as starting aldehyde.   

2.2.1 Brown Crotylation 

The (‒)-(Z)-Brown reagent31 was prepared in situ before each reaction according to literature 

procedure: KOtBu was added to a stirring solution of cis-butene in THF over 10 min, followed 

by addition of n-BuLi at ‒78 °C.  The resulting mixture was stirred for 45 min before the 

addition of (‒)-Ipc2BOMe and then BF3∙OEt2.  The corresponding aldehyde was added to this 

crude mixture of (‒)-(Z)-Brown reagent 29 in THF at ‒78 °C to begin the crotylation reaction 

(Scheme 2.3).31 

Scheme 2.3. Preparation of (‒)-(Z)-Brown reagent 29 

 

Heptanal was added directly to the (‒)-Brown reagent 29 (1.5 equiv) in THF at ‒78 °C 

and the resulting mixture stirred for 16 h.  After complete consumption of heptanal by TLC, the 
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reaction was quenched by addition of 3N NaOH and 30% H2O2 then slowly warmed to room 

temperature over 3 h.  The target allylic alcohol (3R,4R)-30 was isolated in 75% yield by column 

chromatography.  The enantioselectivity of Brown crotylation was determined by analysis of 

Mosher esters 31 and 32.  The esters were made from reactions of (+)- or (‒)-Mosher acid with 

allylic alcohol (3R,4R)-30 in the presence of DCC and DMAP (Scheme 2.4).38 The crude 19F 

NMR spectra showed 93/7 enantioselectivity was achieved (Figure 2.1).  

Scheme 2.4. Brown crotylation of heptanal and Mosher ester derivatization 

 

Figure 2.1. 19F NMR spectra of (+)- and (‒)-Mosher ester derivatives of 31 and 32 

 

2.2.2 Roush Crotylation 

The two Roush reagents (‒)-diisopropyl-D-tartrate-(E)-crotylborate 33 and (+)-diisopropyl-L-

tartrate-(E)-crotylborate 34 were used in the initial screening process.  The reagents were 

prepared from literature procedures:37 KOtBu was added to a solution of trans-butene in THF 

over 10 min, followed by slow addition of n-BuLi at ‒78 °C.  To the resulting mixture was added 
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triisopropyl borate and the resulting mixture was poured into 1 N HCl.  Followed by addition of 

either diisopropyl-D-tartrate in ether to form 33 or a solution of diisopropyl-L-tartrate in ether to 

form 34 (Scheme 2.5).  The organic layer was concentrated and then diluted with toluene to be 

stored at ‒20 °C.  The concentration of each reagent in toluene was determined by measuring the 

yield of a crotylation reaction with 1 equiv of heptanal.  The 33 solution was 1.0 M and the 34 

solution was 0.53 M (see experimental section for details). 

Scheme 2.5. Syntheses of Roush reagents 33 and 34 

 

Heptanal (10 g, 88 mmol) and 15 mg of powdered 4 Å molecular sieves were treated with 

1.5 equiv of (‒)-(Z)-Roush reagent 33 in toluene (1.0 M) at ‒78 °C.  The reaction was completed 

after 3 h.  After aq NaOH workup, 87% of allylic alcohol (3R,4S)-30 was isolated by column 

chromatography.  The enantioselectivity of Roush crotylation was determined by analyses of 

Mosher esters 36 and 37 made from reactions of allylic alcohol (3R,4S)-30 with (+)-or (‒)-

Mosher acids in the presence of DCC and DMAP (Scheme 2.6.).38 The crude 19F NMR spectra 

showed that 89/11 enantioselectivity was achieved (Figure 2.2).   

 

Scheme 2.6. Roush crotylation of heptanal 
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Figure 2.2. 19F NMR spectra of (+)- and (‒)-Mosher ester 36 and 37 

 

The syn/anti diastereoselectivity of both Brown and Roush crotylation was determined by 

13C NMR comparison of the C3 and C5 signals between allylic alcohols (3R,4R)-30, (3R,4S)-30, 

and rac-30.  The allylic alcohol rac-30 was synthesized by reaction of heptanal with 1-methyl-2-

propenyl magnesium bromide at 0 °C.  The 13C NMR spectra comparisons of signals at C3 and 

C5 positions of 30 showed excellent reagent-controlled diastereoselectivities.  The Brown 

crotylation gave exclusively syn product (3R,4R)-30, and the Roush crotylation gave exclusively 

anti product (3R,4S)-30 (Figure 2.3). 

Figure 2.3. 13C NMR spectra comparisons of allylic alcohols 30 at C3 and C5 position 

 



 26 

2.3 HYDROFORMYLATION IN THE PRESENCE OF O-PHENYL 

THIONOCARBONATE 

In the initial approach by Dr. Kumli, the transformation from terminal alkene 21 to aldehyde 23 

was accomplished by a two-step cross-metathesis and then hydrogenation sequence (Section 

1.3.1).  A new reaction was sought because, 1) the cross-metathesis reaction took over 48 h and 

the yields were inconsistent, varying from 56% to 80%; and 2) the cross-metathesis reaction was 

reported to be incompatible with the xanthate functionality (Section 1.3.1), which is an analog of 

the O-phenyl thionocarbonate.  

Because of the mild conditions reported, the Rh-catalyzed reaction by Breit and 

coworkers was chosen as a potential candidate for the hydroformylation step.39 It was reported 

that under 1 atm syngas (1:1 v/v, CO/H2) at room temp, 1-bromo-6-hexene was converted to 6-

bromo-hexanal in 91% yield using Rh(CO)2acac and the 6-diphenylphosphino-2-pyridone ligand 

41 (Scheme 2.8).  

Scheme 2.7. Mild Rh-catalyzed hydroformylation using diphenylphosphinopyridone ligand 41 

 

The 6-diphenylphosphino-2-pyridone ligand 41 used in this hydroformylation reaction 

was synthesized from reaction of 2,6-dichloropyridine with KOtBu to give 39 in 89% yield.  

Treatment of 39 in liquid ammonia, sodium, and triphenylphosphine afforded 40 in 86% yield.  

Hydrolysis of 40 afforded the target pyridone 41 in 77% yield (Scheme 2.9).   
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Scheme 2.8. Synthesis of diphenylphosphinopyridone ligand 41 

 

2.3.1 Rh-Catalyzed Hydroformylation in the Presence of O-Phenyl Thionocarbonate 

The compatibility of the O-phenyl thionocarbonate functionality with this 

hydroformylation was evaluated with alkene 42, which was synthesized in two steps (63% yield) 

from commercially available heptanal.  In the initial experiment, alkene (3R,4R)-42 was added to 

a mixture of 7 mol% Rh(CO2)acac, 35 mol% pyridone ligand 41 in THF.  The resulting mixture 

was subjected to 1 atm (15 psi) of 1:1 mixture of CO/H2 at 25 °C.39  The CO and H2 gases in this 

initial experiment were introduced to the reaction vessel by two separate balloons via a T-shape 

connector (Appendix A, Figure 1).  After 48 h, target aldehyde (4R,5R)-43 was isolated by flash 

chromatography in 43% yield, but 50% of starting alkene 42 was also recovered (Scheme 2.10).   

Scheme 2.9. Synthesis of O-phenyl thionocarbonate containing alkene 42 

 

Prolonging the reaction time to 72 h, only improved the yield marginally to 65%, and 

30% of starting alkene (3R,4R)-42 was recovered (entry 2, Table 2.1).  Next, the experiment was 

conducted in a Parr© EA apparatus (Appendix A, Figure 2) and syngas (1:1 v/v mixture of 
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CO/H2) was used instead of separate CO and H2
 balloons.  At a pressure of 70 psi, the desired 

aldehyde 43 was isolated in 65% yield after only 48 h (entry 3, Table 2.1).  Increase in 

temperature from 25 to 45 °C at 70 psi further increased the speed of the reaction.  The starting 

material disappeared after 48 h and aldehyde (4R,5R)-43 was isolated in 87% yield (entry 4, 

Table 2.1).  The next sets of experiments were conducted in a pressure reactor (Appendix A, 

Figure 3) to allow for higher operating pressure.  At 45 °C and 100 psi, the starting material was 

completely consumed after only 30 h and aldehyde (4R,5R)-43 was isolated in 86% yield (entry 

5, Table 2.1).  Increasing the pressure and temperature to 120 psi and 60 °C sped up the reaction 

further to give 89% yield of (4R,5R)-43 in just 20 h (entry 6, Table 2.1).  All the crude products 

were found to contain trace amount (~1‒2%) of branched aldehyde product 44, but this 

byproduct could easily be separated by column chromatography.  Based on the results, the 

conditions listed in entry 6 were chosen for the iterative cycle, because they gave the maximum 

yield in the shortest time.   

Table 2.1. Rh-catalyzed hydroformylation of model substrate 42 

 

entry pressure temperature reaction time %yield  % recovered 

starting material 
1 15 psi 25 °C 48 h 43%  50% 
2 15 psi 25 °C 72 h 65%  30% 
3 70 psi 25 °C 48 h 65%  30% 
4 70 psi 45 °C 45 h 87%  - 
5 100 psi 45 °C 30 h 86%  - 
6 120 psi 60 °C 20 h 89%  - 
-all reactions conducted at 0.1 M in THF 
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2.4 CROTYLATION REACTIONS IN THE PRESENCE OF O-PHENYL 

THIONOCARBONATE 

The next goal was to determine the compatibility of Brown and Roush crotylation reactions with 

the new synthetic route using O-phenyl thionocarbonate containing aldehyde (4R,5R)-43 and 

(4R,5S)-43.  The starting aldehydes was prepared by Rh-catalyzed hydroformylation of alkene 

(3R,4R)-42 and (3R,4S)-42 (See Section 2.3.1).       

2.4.1 Brown Crotylation of Aldehyde (4R,5R)-43 

The (‒)-(Z)-Brown reagent was prepared in situ as described in Section 2.2.1.  Several Brown 

crotylation reactions of aldehyde (4R,5R)-43 were conducted using 1.6 to 2 equiv of Brown 

reagent, but the isolated yields varied from 51% to 65%.  Furthermore, when 3 equiv of Brown 

reagent was used, only 35% of allylic alcohol (3R,4R,7R,8R)-45 was isolated.  There were 

substantial difficulties associated with the purification of allylic alcohol (3R,4R,7R,8R)-45 

because it co-eluted with the isopinol by-product 46.  The low, variable yields were probably due 

to the multiple flash chromatographies that took place to purify the crude product (Scheme 2.12).        

Scheme 2.10. Brown crotylation of aldehyde (4R,5R)-43 

 

The Brown crotylation selectivity in the second cycle was determined by integration of 

the carbinol carbon signals in the 13C NMR spectrum of target allylic alcohol (3R,4R,7R,8R)-45.  

As shown in Figure 2.4, the ratio of major to minor peaks was determined to be roughly 86/14 
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dr.  This ratio was consistent with two cycles of Brown crotylation with 93/7 enantioselectivity 

plus its minor enantiomer (0.93*0.93 + 0.07*0.07 = 0.869).  Therefore the enantioselectivity of 

the second Brown crotylation reaction appeared to also be 93/7 with no apparent erosion of 

selectivity (Figure 2.4).   

Figure 2.4.  Determination of enantioselectivity of Brown crotylation of (4R,5R)-43 by 

13C NMR  spectrum 

 

2.4.2 Roush Crotylation of Aldehyde (4R,5S)-43 

The compatibility of O-phenyl thionocarbonate functionality with the Roush crotylation reaction 

was assessed by treating aldehyde (4R,5S)-43 (made in two steps from (3R,4S)-30) with 2 equiv 

of a 1.0 M solution of Roush reagent 33 and 4 Å MS in toluene at ‒78 °C (Scheme 2.13).  The 

initial experiment showed complete consumption of aldehyde (4R,5S)-43 after 3 h by TLC.  

After aq NaOH workup, 87% of the desired allylic alcohol (3R,4S,7R,8S)-45 was isolated by 

column chromatography.  This experiment was repeated several times and consistent yields 

(83%‒87%) were obtained.   
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Scheme 2.11. Crotylation of aldehyde (4R,5S)-43 with Roush reagent 33  

 

Roush crotylation diastereoselectivity for the second cycle was determined by the 

integration of carbinol carbon signals of allylic alcohols (3R,4S,7R,8S)-45.  The integrations the 

carbinol carbon signals in 13C NMR spectra showed an 83/17 ratio of major and minor peaks 

(Figure 2.5).  This ratio was consistent with the two cycles of Roush crotylation of 89/11 

enantioselectivity.  No erosion of selectivity was observed during the second cycle.   

Figure 2.5. Determination of enantioselectivity of Roush crotylation of (4R,5S)-43 by 13C NMR  

spectrum 
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2.4.3 O-Phenyl Thionocarbonate Compatibility with Crotylation Reaction Summary 

Although the Brown crotylation gave slightly better enantioselectivity, the difficult isolation 

process resulted in only 35%‒63% yield of the target allylic alcohol (3R,4R,7R,8R)-45.  On the 

other hand, the Roush crotylation gave only moderate enantioselectivity, but it consistently gave 

85%‒87% yields of target allylic alcohol (3R,4S,7R,8S)-45.  The Roush crotylation was chosen 

in the new approach because the consistent yields and easy isolation were better suited for the 

iterative approach.  

2.5 FLUOROUS O-PHENYL THIONOCARBONATE TAGS 

Two different ways to introduce fluorine into the O-phenyl thionocarbonate functionality were 

explored next, either by appending a perfluoroalkyl chain or by substituting fluorine atom(s) 

directly onto the phenyl ring.      

2.5.1 4-Perfluoroalkyl-O-Phenyl Thionocarbonate Tags 

The first focus was on synthesizing O-phenyl thionocarbonate with perfluoroalkyl chains.  It was 

envisioned that these fluorous analogs could be synthesized from 4-perfluoroalkylphenyl 

chlorothionoformate 51, which could be accessed from the corresponding 4-perfluoroalkyl 

phenol 50 in one step (Scheme 2.14).   
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Scheme 2.12. Synthesis of O-4-perfluoroalkylphenyl chlorothionoformate 51 

 

4-(4,4,5,5,6,6,7,7,7-Nonafluorohexyl)phenol 50 was synthesized in three steps from 4-

hydroxybenzaldehyde (Scheme 2.15).40  Benzyl protection of 4-hydroxybenzaldehyde followed 

by Wittig reaction with iodo(3,3,4,4,5,5,6,6,6-nonafluorohexyl)triphenylphosphorane 48 

furnished the benzyl-protected perfluoroalkylphenol 49 in 32% yield over two steps.  

Hydrogenation of 49 gave the target perfluoroalkylphenol 50 in 97% yield.40   

Scheme 2.13. Synthesis of 4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)phenol 50 

 

4-(4,4,5,5,6,6,7,7,7-Nonafluorohexyl)phenol 50 was converted to the (O-4-

(4,4,5,5,6,6,7,7,7-nonafluorohexyl)phenyl)chlorothionoformate 51 upon treatment with 

thiophosgene in the presence of aq NaOH.  The crude product 51 was used directly in the 

thionoacylation step without further purification.  The structure of 51 was confirmed by a 

reaction with ethanol to give the corresponding ethyl(O-4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)-

phenyl)chlorothionoformate 52 in 80% yield (Scheme 2.16).    
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Scheme 2.14. Verification of formation of 51 by reaction with ethanol  

 

Reaction of model allylic alcohol (3R,4R,7R,8R)-45 with 52 in the presence of 5 equiv of 

pyridine in CH2Cl2 did not give the desired bis-O-phenyl thionocarbonate containing product.  

Instead, 95% of starting alcohol (3R,4R,7R,8R)-45 was recovered.  Other acylation attempts with 

stronger bases such as NaH or NaHMDS resulted in decomposition of (3R,4R,7R,8R)-45.   

As a control experiment, allylic alcohol (3R,4R,7R,8R)-45 was also reacted with O-

phenyl chlorothionoformate in CH2Cl2 in the presence of pyridine (5 equiv), and this 

successfully furnished the desired bis-O-phenyl thionocarbonated product (3R,4R,7R,8R)-53 in 

90% yield (Scheme 2.17).  This experiment shows that it is possible to attach a second O-phenyl 

thionocarbonate group to the allylic alcohol (3R,4R,7R,8R)-45.  Because the perfluoroalkyl 

analog of O-phenyl chlorothiono-formate could not be attached to model allylic alcohol 

(3R,4R,7R,8R)-45.  Therefore the second strategy in which the fluorine atoms were attached 

directly on the phenyl ring was explored. 

Scheme 2.15. Synthesis of 53 as control experiment 
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2.5.2 Ultra-Light Fluorous O-Phenyl Thionocarbonate Tags 

The syntheses of fluorine-substituted O-phenyl thionoformates were examined.  The O-phenyl 

chlorothionoformates 56 and 59 were commercially available. The other O-phenyl 

thionocarbonates 54, 55, 56, 57, 58, and 59 were synthesized by reaction the corresponding 

fluorinated phenol with thiophosgene in the presence of aq NaOH (Scheme 2.18).   

Scheme 2.16. Syntheses of “fluorous” O-phenyl chlorothionoformate 54 to 59 

 

Reactions of fluorous O-phenyl chlorothionoformates 54, 55, 56, 57, 58 and 59 with 

allylic alcohol (3R,4R,7R,8R)-45 in the presence of pyridine (5 equiv) in CH2Cl2 successfully 

furnished the corresponding fluorinated analogs of the bis-O-phenyl thionocarbonate tagged 

olefins 60, 61, 62, 63, and 64 (Scheme 2.19).  The only exception was the reaction of alcohol 

(3R,4R,7R,8R)-45 with 59 which resulted in decomposition.   

Scheme 2.17. Syntheses of model “fluorous” bis-O-phenyl thionocabonate tagged olefins 
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The F-HPLC separation of these fluorous bis-O-phenyl thionocarbonate molecules 53, 

60, 61, 62, 63, and 64 was examined using a FluoroFlashTM (PF-C8) column.  The elution time 

of each fluorous analog was established first by individual injections before co-injection of all 

six compounds.  The HPLC trace of the co-injection shows five separate peaks based on 

increasing fluorine content with one overlapping peak that contained mono-fluorinated analogs 

61 and 62 (Figure 2.6).  The F-HPLC with a PFP column gave a similar separation pattern except 

the 53 and 60 fractions, which overlapped on a PFP column (Appenix B, Figure 1).  

Figure 2.6. Fluorous HPLC trace of 53, 60, 61, 62, 63, and 64 mixture by PF-C8 columna) 

 

a. conditions: isocratic 75/25 acetonitrile: H2O, 1 mL/min 

2.5.3 O-Phenyl Thionocarbonate Fluorous Tag Summary 

Two different analogs of O-phenyl chlorothionoformate, one with a perfluoroalkyl chain, and the 

other with direct fluorine substitution on the phenyl rings were synthesized.  The acylation 

reactions to append the analog with perfluoroalkyl chain to model allylic alcohol (3R,4R,7R,8R)-

45 were unsuccessful.  The acylation reactions of (3R,4R,7R,8R)-45 with fluorinated phenyl 

analogs of O-phenyl chlorothionoformate were successful.  The resulting bis-O-phenyl 

thionocarbonate molecules 53, 60, 61 (or 62), 63, and 64 were separable by F-HPLC. 
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3.0  THE FMS OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL 

USING ULTRA-LIGHT FLUOROUS O-PHENYL THIONOCARBONATE TAGS 

After developing a high yielding route that is compatible with the use of O-phenyl 

thionocarbonate group tags and successfully validating the fluorous separations of model 

compounds containing the new tags, the FMS of 4,8,12-trimethylnonadecanol could commence.   

The new synthetic plan involved three cycles of Roush crotylation, tagging, and Rh-

catalyzed hydroformylation followed by aldehyde reduction, demixing, and finally global 

deoxygenation to furnish the (4S,8S,12S)-, (4S,8R,12S)-, (4R,8S,12S)-, and (4R,8R,12S)-

trimethylnonadecanol isomers  (Scheme 3.1).   

Scheme 3.1. Synthetic plan of FMS of four isomers of 4,8,12-trimethylnonadecanol  
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3.1 THE NEW APPROACH WITH O-PHENYL, O-2-FLUOROPHENYL, AND O-4-

FLUOROPHENYL THIONOCARBONATE TAGS 

3.1.1 Tagging Scheme 

This FMS follows an en route double tagging strategy using three different ultra-light O-phenyl 

thionocarbonate tags.  In this first attempt of the new route, the hope was that the lowest possible 

number of fluorine atoms to encode the four isomers could be used.  As shown in Section 2.5.2, 

the three lowest separable tags were the O-phenyl thionocarbonate (F0), the O-2-fluorophenyl 

(F1) and the O-4-fluorophenyl thionocarbonate (F1') tags.   

After the tags were chosen, the tagging was devised.  During the first cycle, the hydroxy 

group adjacent to the methyl stereocenter fixed at the R configuration would be tagged with the 

F0 tag.  During the second cycle, the hydroxy group adjacent to the R methyl stereocenter would 

be tagged with the F0 tag, and the hydroxy group adjacent to the S methyl stereocenter would be 

tagged with a F1 tag.  During the third cycle, the hydroxy group adjacent to the R methyl 

stereocenter would be tagged the F0 tag and the hydroxy group adjacent to the S methyl 

stereocenter would be tagged with a F1'tag.  This tagging scheme would result in the use of only 

two fluorine atoms to encode for four quasiisomers (Scheme 3.2).   

Scheme 3.2. Tagging scheme of the first attempt of the new approach 

 



 39 

3.1.2 First Cycle 

The first cycle started with Roush crotylation of heptanal with diisopropyl-D-tartrate-(E)-

crotylborate 33 in toluene at ‒78 °C.  This furnished (3R,4S)-3-methyldec-1-en-4-ol 30 in 88% 

yield with 89/11 enantioselectivity (Section 2.2.2.).  Allylic alcohol (3R,4S)-30 in CH2Cl2 was 

then treated with O-phenyl chlorothionoformate (1.5 equiv) in the presence of pyridine (5 equiv) 

at 25 °C to give the F0-tagged alkene (3R,4S)-42 in 85% yield.  Hydroformylation of (3R,4S)-42 

in the presence of 7 mol% Rh(CO)2acac and 35 mol% pyridone ligand 41 under 120 psi of 

syngas at 60 °C afforded aldehyde (3R,4S)-43  in 80% yield.  The overall yield for the first cycle 

was 60% over 3 steps (Scheme 3.3).  

Scheme 3.3. First cycle of the initial second generation approach  

 

3.1.3 Second Cycle 

To start the second cycle, aldehyde (3R,4S)-43 was split into two half-portions.  One half 

portion was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give allylic alcohol 

(3R,4S,7R,8S)-45 in 83% yield with 82/18 dr, and the other half portion was reacted with 

diisopropyl-L-tartrate-(E)-crotylborate 34 to give allylic alcohol (3S,4R,7R,8S)-45 in 83% yield 

with 83/17 dr (see Section 2.4.2).  Allylic alcohol (3R,4S,7R,8S)-45 in CH2Cl2 was treated with 

O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) at 25 °C to furnish bis-

(F0,F0)-tagged alkene (3R,4S,7R,8S)-53 in 81% yield.  Allylic alcohol (3S,4R,7R,8S)-45 in 
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CH2Cl2 was treated with O-2-fluorophenyl chlorothionoformate 54 in the presence of pyridine (5 

equiv) at 25 °C to give the bis-(F0,F1)-tagged alkene (3S,4R,7R,8S)-60 in 84% yield.  A 1:1 

mixture of (3R,4S,7R,8S)-53 and (3S,4R,7R,8S)-60 was then subjected to the Rh-catalyzed 

hydroformylation afford mixture aldehyde M-65 in 82% yield.  The overall yield for the second 

cycle was 56% over 3 steps (Scheme 3.4).  

Scheme 3.4. Second cycle of the initial second generation approach  

 

3.1.4 Third Cycle 

To start the third cycle, aldehyde M-65 was again split into two half portions.  One half 

was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give mixture allylic alcohol M-66 

in 80% yield, and the other half was reacted with diisopropyl-L-tartrate-(E)-crotylborate 34 to 

give mixture allylic alcohol M-67 in 83% yield.  Allylic alcohol M-66 in CH2Cl2 was treated 

with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) at 25 °C to give alkene 
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M-68 in 87% yield.  Allylic alcohol M-67 in CH2Cl2 was treated with O-4-fluorophenyl 

chlorothionoformate 56 in the presence of pyridine (5 equiv) at 25 °C to give alkene M-69 in 

84% yield.  Following fluorous tagging, a 1:1 mixture of M-68 and M-69 was subjected to Rh-

catalyzed hydroformylation reaction to afford mixture aldehyde M-70 in 83% yield.  The third 

cycle gave the overall yield of 58% yield over three steps.  Mixture aldehyde M-70 was reduced 

by DIBAL-H at 0 °C to furnish the mixture of four fluorous-tagged quasiisomers of 4,8,12-

trimethylnonadecanol M-71 in 87% yield (Scheme 3.5).  The overall yield was 17% yield over 

16 steps, and 140 mg of M-71 was obtained at the end of the synthesis. 

 Scheme 3.5. Third cycle of the initial second generation approach  
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3.1.5 Characterizations and Fluorous Demixing of Mixture M-71 

The 19F NMR spectrum of M-71 showed the presence of both the O-2-fluorophenyl and the O-4-

fluorophenyl thionocarbonate tags, and the 1H NMR spectrum of M-71 at 700 MHz showed the 

presence of a triplet signal at 3.64 ppm, which is consistent with the carbinol signal of a primary 

alcohol, and a multiplet signal at 5.39 ppm, which is consistent with the secondary carbinol 

proton signals.  A triplet signal at 0.89 ppm, which was consistent with the terminal methyl 

group was identified.   The HRMS of M-71 confirmed the presence of all four quasiisomers.   

The mixture M-71 was first injected into F-HPLC with a FluoroFlashTM (PF-C8) column 

and eluted with isocratic 65:35 acetonitrile/H2O system (Figure 3.1).  Four different fluorous 

quasiisomers were observed but they eluted too closely to be isolated individually.  M-71 was 

also analyzed by a Discovery® HS F5 PFP column on F-HPLC, but the trace gave even less 

separation between each fluorous quasiisomers than the analysis on a FluoroFlashTM 

(Appendix.B, Figure 2).  Although four peaks could be observed using the FluoroFlashTM PF-C8 

column, baseline resolution was only achieved between peaks 2 and 3.  It was concluded that 

preparative demixing on a larger scale would not succeed.     

Figure 3.1.  Fluorous HPLC trace of mixture M-71 by PF-C8 column 
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3.2 THE NEW APPROACH WITH O-PHENYL, O-4-FLUOROPHENYL, AND O-3,4-

DIFLUOROPHENYL THIONOCARBONATE TAGS 

3.2.1 Tagging Scheme 

It was hypothesized that the tight separations between peaks 1 and 2, and peaks 3 and 4 in the 

previous attempt were due to the use of the O-2-fluorophenyl thionocarbonate (F1) tag (Figure 

3.1).  To circumvent this problem, the F1 tag was substituted with the O-3,4-difluorophenyl 

thionocarbonate (F2) tag in the second attempt.  The three tags used in this second attempt were 

O-phenyl (F0), O-4-fluorophenyl (F1') and O-3,4-difluorophenyl (F2) thionocarbonate tags.  This 

new attempt would start from the second cycle because the first cycle was identical to the first 

attempt. 

During the second cycle, it was planned to tag the hydroxy group adjacent to the R 

methyl with the F0 tag, and tag the hydroxy group adjacent to the S methyl with the F1'tag.  

During the third cycle, it was planned to tag the hydroxy group adjacent to the R methyl with the 

F0 tag, and tag the hydroxy group adjacent to the S methyl with the F2 tag (Scheme 3.6).  This 

tagging scheme would result in the use of six fluorine atoms to encode for four isomers.   

Scheme 3.6. Tagging scheme of the new second generation approach 

 



 44 

3.2.2 Second Cycle 

The product of the first cycle, aldehyde (3R,4S)-43 was split into two half portions.  The first half 

portion was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give allylic alcohol 

(3R,4S,7R,8S)-45 in 88% yield.  The second half portion was reacted with diisopropyl-L-tartrate-

(E)-crotylborate 34 to give allylic alcohol (3S,4R,7R,8S)-45 in 84% yield.  Allylic alcohol 

(3R,4S,7R,8S)-45 was treated with O-phenyl chlorothionoformate in the presence of pyridine (5 

equiv) at 25 °C to give bis-(F0-F0)-tagged alkene (3R,4S,7R,8S)-53 in 84% yield.  Allylic alcohol 

(3S,4R,7R,8S)-45 in CH2Cl2 was treated with O-4-fluorophenyl chlorothionoformate 56 in the 

presence of pyridine (5 equiv) at 25 °C to give bis-(F0-F1’)-tagged alkene (3S,4R,7R,8S)-62 in 

84% yield.  After fluorous tagging, a 1:1 mixture of (3R,4S,7R,8S)-53 and (3S,4R,7R,8S)-62 was 

subjected to the Rh-catalyzed hydroformylation reaction to afford aldehyde M-72 in 82% yield.  

The overall yield for the second cycle was 59.4% over 3 steps (Scheme 3.7).  

Scheme 3.7. Second cycle of the second attempt of the new FMS approach 
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3.2.3 Third Cycle 

The third cycle started with splitting of aldehyde M-72 in two half portions.  The first half 

portion was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give mixture allylic 

alcohol M-73 in 84% yield.  The second half portion was reacted with diisopropyl-L-tartrate-(E)-

crotylborate 34 to give mixture allylic alcohol M-74 in 84% yield.  Mixture allylic alcohol M-73 

was reacted with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) to give 

alkene M-75 in 86% yield.  Mixture allylic alcohol M-74 was reacted with O-3,4-difluorophenyl 

chlorothionoformate 57 in the presence of pyridine (5 equiv) to give alkene M-76 in 88% yield.  

A 1:1 mixture of M-75 and M-76 was subjected to the Rh-catalyzed hydroformylation to afford 

mixture aldehyde M-77 in 80% yield.  Aldehyde M-77 was reduced by DIBAL-H at 0 °C to give 

880 mg of a mixture of four fluorous tagged 4,8,12-nonadecanols M-78 in 88% yield (Scheme 

3.8).  The yield for the third cycle was 56% over 3 steps.  The overall yield for the synthesis of 

M-78 was 18% over 16 steps.  The yields per cycle were reliably between 56% and 60%.  

Scheme 3.8. Third cycle of the second attempt of the new FMS approach 
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3.2.4 Characterizations and Fluorous Demixing of Mixture M-78 

The 19F NMR spectrum of M-78 showed the presence of both the O-4-fluorophenyl and the O-

3,4-difluorophenyl thionocarbonate tags, and the 1H NMR spectrum of M-78 showed the 

presence of a triplet at 3.65 ppm which is consistent with the carbinol signal of a primary alcohol 

and a multiplet at 5.33 ppm, which is consistent with the secondary carbinol proton signal.  A 

triplet signal at 0.892 ppm, which is consistent with the terminal methyl group was also 

identified.   The HRMS of M-78 confirmed the presence of all four quasiisomers.   

Injection of M-78 into F-HPLC with a FluoroFlash
TM PF-C8 column eluting with 

isocratic 65:35 (acetonitrile/H2O) gave baseline separation of all four quasiisomers (Figure 3.2).  

Analysis of M-78 on Discovery® HS F5 PFP column gave a similar separation, but the analysis 

of M-78 on the reverse phase RP-C18 column gave only one large unresolved peak (Appendix B, 

Figure 3).  
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Figure 3.2. Fluorous HPLC trace of mixture M-78 by PFC-8 columna) 

 

a) conditions: isocratic 70/30 acetonitrile: H2O, 1 mL/min 

The semi-prep scale F-HPLC demixing of alcohol M-78 was achieved on the PF-C8 

column (FluoroFlash
® 100 Å, 5 μm) by eluting with a gradient of 60:40 CH3CN/H2O to 100% 

CH3CN over 1 h (Figure 3.3).  Because of the close elution of the four peaks, the demixing was 

accomplished by several 1 mL injections of 10 mg/mL of M-78 in CH3CN.  The four different 

peaks were collected and the products were identified by 19F NMR.  The first peak, which did 

not give any signal in the 19F NMR spectrum, was identified as the (4R,5S,8R,9S,12R,13S)-78 

quasiisomer; the second peak, which gave 1 fluorine signal at ‒115.89 ppm in the 19F NMR 

spectrum, was identified as the (4R,5S,8S,9R,12R,13S)-78 quasiisomer; the third peak, which 

gave 2 fluorine signals at ‒134.14 and ‒139.75 ppm, was identified as the 

(4S,5R,8R,9S,12R,13S)-78 quasiisomer; and the fourth peak, which gave 3 fluorine signals at ‒

115.77, ‒134.14 and ‒139.63 ppm, was identified as the (4S,5R,8S,9R,12R13S)-78 quasiisomer.   
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Figure 3.3. Semi-prep fluorous HPLC trace of mixture M-78 by PF-C8 columna) 

 

conditions: gradient 60:40 to 100:0 acetonitrile: H2O, 5 mL/min 

Overall, 107 mg of M-78 was subjected to semi-prep HPLC, the recovery of each isomer 

is summarized in Table 3.1.  The overall % recovery was calculated to be ~70%.  To confirm the 

purity of each quasiisomer, each fraction was re-injected to the HPLC under analytical 

conditions.  The F-HPLC traces showed that the first quasiisomer was pure, but that the 

following three quasiisomers were contaminated with 1‒3% of the previous isomer (Figure 3.4).   

Since the samples were expected to have ~35% of true isomer contaminants from the Roush 

crotylations, the 1‒3% of quasiisomer contaminants were not significant in comparison.  So the 

samples were detagged without further purification. 

Table 3.1. Recovery of each isomer after demixing 

 recovered (mg) % recovery 
(4S,8S,12S)-78 20 74% 
(4S,8R,12S)-78 19 71% 
(4R,8S,12S)-78 16 68% 
(4R,8R,12S)-78 20 67% 
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Figure 3.4. F-HPLC trace of each quasiisomer by PF-C8 column 

 

3.2.5 Global Radical Deoxygenation (Detagging) of F-O-Phenyl Thionocarbonate 

The global radical deoxygenation step was first evaluated with mixture M-78 using 

dimethylimidazolium carbene borane (diMe-Imd-BH3) at room temp and with heating 

conditions.41  In the room temp experiment, 5 equiv of both diMe-Imd-BH3 and Et3B were added 

to a solution of M-78 in benzene-d6.  The mixture was initially stirred in open air for 3 h, TLC 

analysis showed that staring alcohol M-78 remained, so an additional 5 equiv of Et3B was added.  

After 3 h more, the solvent was removed.  The 1H NMR spectrum of the crude product showed a 

large signal at 5.33 ppm, indicating the presence of the secondary O-phenyl thionocarbonate and 

showing that incomplete deoxygenation.   In the heated condition, 5 equiv of both diMe-Imd-

BH3 and AIBN were added to a solution of M-78, and the mixture was heated to 80 °C.  After 3 

h, TLC analysis showed the complete consumption of alcohol M-78.  The mixture 4,8,12-

trimethylnonadecanol M-79 was isolated in 75% yield after flash chromatography (Scheme 3.9).  
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The 19F NMR spectrum of M-79 showed no signals, indicating that no fluorous tags remained.  

This sample served as the standard for spectroscopic characterization of the mixed products.  It 

should contain four different isomers in a ratio of 1/1/1/1. 

Scheme 3.9. Model radical global deoxygenation of mixture M-78 

 

The global deoxygenation of quasiisomers (4R,5S,8R,9S,12R,13S)-78, 

(4R,5S,8S,9R,12R,13S)-78, (4S,5R,8R,9S,12R,13S)-78, and (4S,5R,8S,9R,12R,13S)-78 were 

accomplished by heating with diMe-Imd-BH3/AIBN to afford (4S,8S,12S)-79, (4S,8R,12S)-79, 

(4S,8R,12S)-79, and (4R,8R,12S)-79 in 67%, 52%, 65%, and 63% yields, respectively after 

purification by column chromatography (Scheme 3.10).   

Scheme 3.10. Global radical deoxygenation of four quasiisomers   

  



 51 

 

3.2.6 FMS Summary 

The FMS of four isomers of 4,8,12-trimethylnonadecanol was accomplished in 16 steps 

(including F-HPLC recovery, and the global deoxygenation steps) with an average of 7.8% 

overall yield.  This FMS was accomplished by using the new ultra-light fluorous O-phenyl 

thionocabonate tags.  These new fluorous tags were used to successfully encode four 

stereoisomers with only six fluorine atoms, making it the most efficient FMS to date.  This is a 

dramatic improvement over the previously most efficient FMS (FMS of SCH725674),9c which 

used 30 fluorine atoms to code for four isomers.   

 



 52 

3.3 SPECTROSCOPIC ANALYSES OF FOUR ISOMERS OF 4,8,12-

TRIMETHYLNONADECANOL  

3.3.1 Analyses of 1H NMR Spectra of M-79 and Four Isomers of 4,8,12-Trimethyl-

nonadecanol  

The 1H NMR spectra of the mixture M-79 and the four individual isomers were recorded in 

CDCl3 at 700 MHz, and the complete 1H NMR spectra are shown in Appendix E.  The five 

spectra were similar in all respects except for the methyl region (0.82‒0.90 ppm).  To simplify 

the labeling of the branched methyl groups, the terminal methyl is herein designated as 19, C4-

methyl as 20, the C8-methyl as 21, and the C12-methyl as 22 (Figure 3.5).   

Figure 3.5. Designations of the methyl groups in 4,8,12-trimethylnonadecanol 79 

 

Upon expanding the methyl region (0.82‒0.90 ppm) of the four spectra of single isomers, 

we learned that all the branched methyl group protons (H20, H21, and H22) signals are 

distinguishable in all four isomers.  Furthermore, each spectrum showed a unique combination of 

chemical shifts for the major H20, H21, and H22 signals, and the terminal methyl group H19 

signal remained the same in all four spectra.  The 1H NMR spectra from standard processing did 

not give good enough resolution to show all the signals, however, because they are so close.  

Therefore, each spectrum was subjected to additional processing by using the Traficante 

algorithm followed by forward linear prediction to improve the resolution.42 Figure 3.6 shows 

the overlay of the methyl region of (4S,8S,12S)-79 spectrum of the before and after additional 

processing.  The red spectrum was generated with standard processing and the black spectrum 
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was generated with the Traficante processing.  The black spectrum clearly resolves the two 

overlapping doublets of 0.844 and 0.840 ppm (right group of peaks), and the overlapping doublet 

and triplet of 0.882 and 0.874 ppm (left group of peaks).  Small peaks of expected stereoisomer 

impurities are also clearly visible. 

Figure 3.6. 1H NMR spectra between regular and the Traficante algorithm processing 

 

By lining up the methyl regions of the four 1H NMR spectra (Figure 3.7), it was learned 

that both (4S,8S,12S)-79 (spectrum 2) and (4R,8R,12S)-79 (spectrum 5) contained a doublet at 

0.874 ppm, but the other two signals differed.  These two isomers also both have the C20 in a syn 

relationship to the C21.  It was deduced that the 0.874 ppm signal must belong to the H20 in both 

(4S,8S,12S)-79 and (4R,8R,12S)-79.  Likewise, both (4S,8R,12S)-79 and (4R,8S,12S)-79, which 

have the C20 in a anti relationship to the C21, contained a doublet signal at 0.872 ppm in their 

1H NMR spectra.  Therefore, we assigned this doublet signal to the H20 for (4S,8R,12S)-79 and 

(4R,8S,12S)-79.  By a similar process of deduction, we were able to assign all the methyl signals 

in all four isomers (Table 3.3).  The complete assignments of the methyl group region are listed 

under the corresponding methyl group in Figure 3.7.  There are a total of seven different doublets 
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found in the methyl region, H20-syn (0.874 ppm), H20-anti (0.872 ppm), syn-H21-syn (0.844 

ppm), syn-H21-anti or anti-H21-syn (0.842 ppm), anti-H21-anti (0.841 ppm), H22-syn (0.840 

ppm), H22-anti (0.839 ppm) (Table 3.3).  The 0.841 and 0.840 ppm signals overlapped in the 1H 

NMR of M-79 as one larger signal (spectrum 1, Figure 3.7).  These seven signals correspond to 

the seven different types of methyl groups as indicated in Table 3.3.  Five of the methyl group 

types appear twice, and two appear once, for the total of seven. 

Figure 3.7. 1H NMR of methyl region expansion of the four isomers 

 

Table 3.2. Relationship table for methyl group matching in 4,8,12-trimethylnonadecanol 79 

spectrum 2 3 4 5 
2 — no match H22-syn H20-syn 
3 no match — H20-anti H22-anti 
4 H22-syn H20-anti — anti-H21-syn 
5 H20-syn H22-anti syn-H21-anti — 
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Table 3.3. The complete assignments of the 7 different methyl proton signals in 1H NMR spectra 

type of methyl proton chemical  shift (ppm)  
H20-syn 0.874 
H20-anti 0.872 

syn-H21-syn 0.844 
syn-H21-anti and anti-H21-syn 0.842 

anti-H21-anti 0.841* 
H22-syn 0.840* 
H22-anti 0.839 

* -shows up as an overlapping signal in 1H NMR spectrum of M-89 

The purity of each isomer was not estimated due to the large number of possible peaks (3 

+ 2 × 7 = 17) found in a small region.  The isomeric purity of each sample becomes clearer in the 

subsequent 13C NMR spectroscopic analysis due to fewer numbers of possible peaks.   

The H20, H21, and H22 assignments in 1H NMR were verified by 1D TOCSY 

experiments conducted by Dr. D. Krishnan.  In each experiment, the carbinol proton signal were 

first excited, followed by a recording of the spectrum after a 0.3 sec delay, and then a second 

recording after a 0.5 sec delay.  During the delay, the initial magnetization was gradually 

transferred to the methyl groups depending on their distance from the carbinol protons. 

 An example of the results from the 1D TOCSY experiment of (4S,8S,12S)-79 is shown 

in Figure 3.8.  The carbinol proton signal at 3.634 ppm was irradiated.  After 0.3 sec the 

spectrum showed an increase in the doublet at 0.874 ppm. This signal was assigned to the closest 

H20.  After 0.5 sec, the spectrum showed an increase of a second doublet at 0.844 ppm.  This 

was assigned to the second closest H21.  The remaining unaffected doublet at 0.840 ppm was 

assigned to the furthest away H22.  Likewise, the methyl groups of the other three isomers were 

assigned.  The assignments from the 1D TOCSY experiments agreed with the previous 

assignments made by the direct comparative method.  The 1D TOCSY spectra of (4S,8R,12S)-

79, (4R,8S,12S)-79, and (4R,8R,12S)-79 are shown in Appendix C.  
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Figure 3.8. 1D TOCSY of (4S,8S,12S)-trimethylnonadecanol 79 

 

3.3.2 Analysis of 13C NMR Spectra of M-79 and Four isomers of 4,8,12-

Trimethylnonadecanol  

The 
13

C NMR spectra of the mixture M-79 and the four isomers were recorded in CDCl3 at 150 

MHz.  The 
13

C NMR spectra of the four isomers were slightly different in three regions, 19.5‒

20.0 ppm, 32.0‒33.5 ppm, and 37.0‒37.5 ppm.  Based on the 
13

C NMR assignments of -

tocopherol by Ingold and coworkers,
19a

 these three regions were identified as the C20, C21, and 

C22 methyl region at 19.5‒19.9 ppm, the C4, C8, and C12 methine region at 32.6‒33.1 ppm, and 

the C3, C5, C7, C9, C11, and C13 methylene region at 37.0‒37.5 ppm (Figure 3.9).   
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Figure 3.9. The three regions in 13C NMR spectra with differentiable signals    

 

The most downfield region is difficult to analyze because it contains six closely spaced 

resonances with some overlapping one another.  Both the methane and branched methyl regions 

have three resonances.  We chose to analyze the later region (19.0‒20.5 ppm) further to see if the 

methyl configurations to chemical shifts correlations observed in 1H NMR spectra also exist in 

the 13C NMR spectra.  To improve the resolution of the 13C NMR spectra, the five samples (M-

79, 4S,8S,12S-79, 4S,8R,12S-79, 4R,8S,12S-79, 4R,8R,12S-79) were first subjected to 13C NMR 

experiments with a narrower scanning range between 19.0‒20.5 ppm.  The resulting spectra were 

then processed with the Traficante algorithm processing.42 Figure 3.10 shows the improvement 

in resolution by overlaying the 19.50‒19.90 ppm expansion of the (4S,8S,12S)-79 13C NMR 

spectrum.  The red spectrum was generated from standard processing and the black spectrum 
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was generated from the additional Traficante algorithm processing.  The black spectrum clearly 

shows three major peaks and several minor peaks.  

Figure 3.10. 13C NMR spectra between regular processing and Traficante algorithm processing 

 

The 13C NMR spectrum expansion of the C20, C21, C22 methyl region (19.0‒20.5 ppm) 

in the mixture M-79 showed seven distinct carbon signals in roughly equal heights, indicating the 

presence of seven different configurations (types) of the methyl group in the four isomers.  After 

lining up the five 13C NMR spectra, we learned that each spectrum contained 7 peaks, 3 major 

peaks and four minor peaks, and all seven peaks aligned with the seven peaks found in the 13C 

NMR spectrum of the mixture M-79 (Figure 3.11).  We were able to assign the three major peaks 

and four minor peaks in each spectrum by the same comparative method introduced earlier.  To 

illustrate this method, in Figure 3.11 we color-code the methyl group with syn relationship(s) 

with its neighboring methyl group(s) in red; the methyl group with anti relationship(s) with its 

neighboring methyl group(s) in blue; and the methyl group with a syn relationship on one side 

and an anti relationship on the other in black (Figure 3.11).  The complete assignments of the 
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seven methyl carbon signals are summarized in Table 3.4.  It is important to note that all seven 

signals appear within a 0.18 ppm span. 

Figure 3.11. 13C NMR methyl branch expansion of the mixture M-79 and four isomers 

 

Table 3.4. The complete assignments of the seven different methyl carbon signals in 13C NMR 

spectra  

type of methyl carbon chemical  shift (ppm)  
C20-syn 19.67 
C20-anti 19.61 

syn-C21-syn 19.79 
syn-C21-anti and anti-C21-syn 19.73 

anti-C21-anti 19.66 
C22-syn 19.77 
C22-anti 19.70 
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The methyl group carbon assignments were verified by correlating the methyl carbon 

signals with their corresponding proton signals in inverse 2D HMQC experiments conducted by 

Dr. D. Krishnan. For example, in the methyl region expansion of the 2D HMQC spectrum of 

(4S,8S,12S)-79 shown in Figure 3.12., the 19.79 ppm signal was correlated to the C21 methyl 

proton doublet signal at 0.844 ppm; the 19.77 ppm signal was correlated to the C22 methyl 

proton doublet signal at 0.840 ppm; and the 19.67 ppm signal was correlated to the C20 methyl 

proton doublet signal at 0.874 ppm.  These 2D HMQC assignments agreed with the assignments 

made by the comparative method.  The methyl group assignments of remaining three isomers 

were verified by similar 2D HMQC experiments (Appendix D).  

Figure 3.12. Expansion of the branched methyl region of the inverse 2D HMQC of (4S,8R,12S)-

79 
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3.3.3 Isomeric Purity Estimation in Each Sample  

Due to the different isomeric impurities present in each sample, we decided to estimate the purity 

of each sample by comparing the 13C NMR spectra to the simulated 13C NMR spectra of each 

final product based on 89/11 Roush crotylation selectivity per cycle (for three cycles).  To 

simulate these four 13C NMR spectra, we first constructed a table of percentage compositions for 

each isomer in a given sample (Table 3.5).  For example, sample 1 contains ~70% of 

(4S,8S,12S)-79 isomer (0.89*0.89*0.89 = 0.70), ~9% of the (4S,8R,12S)-79 isomer 

(0.89*0.11*0.89 = 0.09), ~9% of the (4R,8S,12S)-79 isomer, ~9% of the (4S,8S,12R)-79 isomer, 

~1% of the (4R,8R,12S)-79 isomer (0.11*0.11*0.89 = 0.01), ~1% of the (4R,8S,12R)-79 isomer, 

~1% of the (4R,8R,12S)-79 isomer, and ~0.1% of the (4R,8R,12R)-79 isomer. 

Based on Table 3.5, we then calculated the percentage intensity of each carbon signal.  

For example, for the sample 1, the percentage of syn-C20 (19.67 ppm) was calculated to be 

~0.80.  This was calculated by adding the percentage composition of the main isomer 

(4S,8S,12S)-79, and impurities (4S,8S,12R)-79, (4R,8R,12S)-79, and (4R,8R,12R)-79 isomers, 

which all contain a syn-C20 signal (0.70 + 0.09 +0.01 + 0.001 = 0.80).  The percentage intensity 

of the anti-C20 (19.61 ppm) signal was calculated to be ~20% by adding the impurities 

(4S,8R,12S)-79, (4S,8R,12R)-79, (4R,8S,12S)-79, and (4R,8S,12R)-79 isomers (0.09 + 0.01 + 

0.09 + 0.01 = 0.20).  Together, syn-C20 and anti-C20 makes up to 100% of all C20 signals.  The 

percentage intensity of each type of C21 and C22 are calculated in the same way using Table 3.5, 

and summarized in Table 3.6.   

The four simulated 13C NMR spectra with 89/11 selectivity at each cycle were created 

using Table 3.6 with an NMR spectra simulator-WINDNMR©.  These spectra are shown in 

Figure 3.13.   
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Table 3.5. The percentage composition of each isomer in the four samples 

 sample (%) 
 1 2 3 4 

(4S,8S,12S)-79 70 9 9 1 
(4S,8S,12R)-79 9 1 1 0.1 
(4S,8R,12S)-79 9 70 1 9 
(4S,8R,12R)-79 1 9 0.1 1 
(4R,8S,12S)-79 9 1 70 9 
(4R,8S,12R)-79 1 0.1 9 1 
(4R,8R,12S)-79 1 9 9 70 
(4R,8R,12R)-79 0.1 1 1 9 

sample 1 contains (4S,8S,12S)-89 as the major isomer; sample 2 contains (4S,8R,12S)-89 as the major isomer; 
sample 3 contains (4R,8S,12S)-89 as the major isomer; sample 4 contains (4R,8R,12S)-89 as the major isomer. 

 

Table 3.6. The estimated percentage C20, C21, and C22 intensities in 13C NMR spectra 

 sample (%) 
 1 2 3 4 

syn-C20 (19.67 ppm) 80 20 20 80 
anti-C20 (19.61 ppm) 20 80 80 20 

syn-C21-syn (19.79 ppm) 71 10 10 10 
syn-C21-anti (19.73 ppm) 20 20 80 80 
anti-C21-anti (19.66 ppm) 10 71 10 10 

syn-C22 (19.77 ppm) 80 20 80 20 
anti-C22 (19.70 ppm) 20 80 20 80 

 

Figure 3.13. Spectral comparison between actual and simulated 13C NMR spectra 
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As shown in Figure 3.13, the simulated 13C NMR spectra closely resemble the actual 13C 

NMR spectra in all four samples.  Therefore, it can be conclude that the isomeric purities in each 

sample are ~70% as a result of three cycles of Roush crotylation at about 89% for each cycle.  

No apparent erosion in enantioselectivity for Roush crotylation between the second and third 

cycle was observed. 

3.3.4 Development of an NMR-Based Method for Assigning the Methyl Group 

Configurations in a Polyisoprenoid System  

The spectroscopic analyses of isoprenoids M-79, 4S,8S,12S-79, 4S,8R,12S-79, 4R,8S,12S-79, and 

4R,8R,12S-79 showed that the methyl groups at the same position with the same relative 

configuration with neighboring methyl group(s) would share identical 1H and 13C NMR chemical 

shifts.  This phenomenon is further evident by the fact that only seven, instead of 12, different 

signals were observed in both the 1H and the 13C NMR spectra of the mixture M-79.  These 

seven principle signals were identified as C20-syn, C20-anti, syn-C21-syn, syn-C21-anti (or anti-
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C21-syn), anti-C21-anti, C22-syn, and C22-anti methyl configurations.  Table 3.7 lists the 1H 

and 13C NMR chemical shifts for the 7 principle methyl configurations. 

Table 3.7. Chemical shifts of the seven principle types of methyl configuration in 1H and 13C 

NMR 

 

type of methyl group 1H NMR chemical shift (, ppm) 13C NMR chemical shift (, ppm) 
C20-syn 0.874 (d) 19.67 
C20-anti 0.872 (d) 19.61 

syn-C21-syn 0.844 (d) 19.79 
syn-C21-anti 0.842 (d) 19.73 
anti-C21-anti 0.841 (d) 19.66 

C22-syn 0.840 (d) 19.77 
C22-anti 0.839 (d) 19.70 

 

 

 

d- doublet; t- triplet 

Based on these observations, it was postulated that the methyl group chemical shifts in 

repeating isoprenoid system will be dictated predominantly by the 1,5-methyl-methyl 

interaction(s).  Based on this, it can be predicted that the appearance of branched methyl group 

1H and 13C NMR region of any isoprenoid molecule by applying the appropriate chemical shifts 

and multiplicities from Table 3.4.  If these values are inputted into an NMR simulator such as 

WINDNMR©, the resulted predicted spectra can be visualized and compared with the spectra of 

synthetic or natural products for the purpose of structural identification or purity assessments.     
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4.0  SPECTROSCOPIC PREDICTIONS  

The first step in predicting the appearance of the branched methyl region of 1H and 13C NMR 

spectra of a given polyisoprenoid is to set up a characterization table that includes the quantity 

and type of branched methyl within the given polyisoprenoid.  The 1H and 13C NMR spectra can 

then be simulated by inputting these values into WINDNMR©.  

To generalize the labeling of the branched methyl groups, we will herein refer to the C20 

or the left-most methyl carbon as the end1, the C21 or the middle methyl carbon(s) as middle, 

and C22 or the right-most methyl carbon as end2.  In any polyisoprenoid system there will be 

one end1 methyl group, and one end2 methyl group, but depending on the number of repeating 

units there can be many middle methyl groups (Figure 4.1). 

Figure 4.1. Branched methyl group designations for isoprenoid structures 
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4.1 SPECTROSCOPIC PREDICTIONS OF EIGHT ISOMERS OF 4,8,12,16-

TETRAMETHYLTRICOSANOL 

To predict the 1H and 13C NMR spectra of 4,8,12,16-tetramethyltricosanol, the characterization 

table for each isomer was setup.  As shown in Figure 4.2, 4,8,12,16-tetramethyltricosanol 80 

contains four branched methyl groups: one end-1 methyl group, one end-2 methyl group and two 

middle methyl groups.  The methyl group characterization table (Table 4.1) is set up with the 8 

diastereomers on vertical axis and the seven principle type of methyl on the horizontal axis.  The 

numbers correspond to the quantity of each type of methyl group in a given isomer.  

Figure 4.2. The structure of 4,8,12,16-tetramethyltricosanol 80 

 

Table 4.1. Characterization table for 4,8,12,16-tetramethyltricosanol 80  

 syn-e1 anti-e1 syn-m-syn syn-m-anti anti-m-anti syn-e2 anti-e2 
4S,8S,12S,16S 1 — 2 — — 1 — 
4S,8S,12S,16R 1 — 1 1 — — 1 
4S,8S,12R,16S 1 — — 1 1 — 1 
4S,8R,12S,16S — 1 — 1 1 1 — 
4S,8S,12R,16R 1 — — 2 — 1 — 
4S,8R,12R,16S — 1 — 2 — — 1 
4S,8R,12S,16R — 1 — — 2 — 1 
4S,8R,12R,16R — 1 1 1 — 1 — 

e1 = end1; m = middle; e2 = end2 

The spectra can then be simulated using WINDNMR© by referencing chemical shifts 

and multiplicities of each corresponding methyl group from Table 3.4.  The 1H NMR spectra are 

simulated at 700 MHz and the 13C NMR are simulated at 150 MHz.  The predicted 1H NMR 

spectra are shown in Figure 4.3 and the predicted 13C NMR spectra are shown in Figure 4.4.    
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Figure 4.3. 1H NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80 

 

 

Figure 4.4. 13C NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80 
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From the predicted 1H and 13C NMR spectra of 4,8,12,16-tetramethyltrocosanol, it can be 

seen that the spectra of all eight isomers are different.  The 1H NMR spectra contain either 9 (one 

triplet and three doublets) or 11 (one triplet and four doublets) signals and the 13C NMR spectra 

contain either 3 or 4 signals.  Since the terminal methyl always appear as a triplet at 0.882 ppm 

in the 1H NMR spectra, and the two end methyl groups (end1 and end2) appear as two doublets 

in the 1H NMR spectra and as two signals in the 13C NMR spectra.  The only factor that 

determines whether a spectrum would have nine or 11 signals in the 1H NMR spectra and three 

or four signals in the 13C NMR spectra is the type of middle methyl groups.  If the two middle 

methyl groups are the same type, then their signals would overlap to give only nine signals (one 

triplet and three doublets) in the 1H NMR spectra and three signals in the 13C NMR spectra with 

the overlapping signals having double intensities [e.g., (4S,8S,12S,16S)-, (4S,8S,12R,16R)-, 

(4S,8R,12R,16S)-, and (4S,8R,12S,16R)-80].  On the other hand, if the two middle methyl groups 

are different types, then there would be a total of 11 signals in the 1H NMR spectra, and 4 signals 
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in the 13C NMR spectra with all signals in equal intensities [e.g. (4S,8S,12S,16R)-, 

(4S,8S,12R,16S)-, (4S,8R,12S,16S)-, and (4S,8R,12R,16R)-80].   

4.2 SPECTROSCOPIC PREDICTIONS OF SIXTEEN ISOMERS OF 4,8,12,16,20-

PENTAMETHYLHEPTACOSANOL  

The 4,8,12,16,20-pentamethylheptacosanol 81, which was identified as the polyisoprenoid side 

chain of the natural product MPM-1, contains five branched methyl groups: one end1 methyl 

group; one end2 methyl group; and three middle methyl groups (Figure 4.5). 

Figure 4.5. The structure of 4,8,12,16,20-pentamethylheptacosanol 81 

 

To predict the 1H and 13C NMR spectra of 4,8,12,16,20-pentamethylheptacosanol 81, the 

characterization table (Table 4.2) was setup.  Although there are sixteen diastereomers, Table 4.2 

shows that there are only fourteen unique methyl group profiles.  Two sets of isomers share the 

same methyl group characterizations.  Therefore, each of the two sets of isomers would have the 

same 1H and 13C NMR spectra and the remaining 12 isomers would have unique spectra.  The 

isomers that share the same methyl group profiles are (4S,8S,12S,16R,20R)- and the 

(4S,8S,12R,16R,20R)-81 isomers (highlighted in yellow), which have one syn-e1, one syn-e2, 

one syn-m-syn, and two syn-m-anti methyl groups, and the (4S,8R,12S,16S,20R)- and the 

(4S,8R,12R,16S,20R)-81 isomers (highlighted in red), which have one anti-e1, one anti-e2, two 

syn-m-anti, and one anti-m-anti methyl groups.    
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Table 4.2. Methyl group characterization table for 4,8,12,16,20-pentamethylheptacosanol 81 

 syn-e1 anti-e1 syn-m-syn syn-m-anti anti-m-anti syn-e2 anti-e2 

4S,8S,12S,16S,20S 1 — 3 — — 1 — 
4S,8S,12S,16S,20R 1 — 2 1 — — 1 
4S,8S,12S,16R,20S 1 — 1 1 1 — 1 
4S,8S,12R,16S,20S 1 — — 2 1 1 — 
4S,8R,12S,16S,20S — 1 1 1 1 1 — 
4S,8S,12S,16R,20R 1 — 1 2 — 1 — 
4S,8S,12R,16R,20S 1 — — 3 — — 1 
4S,8R,12R,16S,20S — 1 — 3 — 1 — 
4S,8S,12R,16S,20R 1 — — 1 2 — 1 
4S,8R,12S,16S,20R — 1 — 2 1 — 1 
4S,8R,12S,16R,20S — 1 — — 3 — 1 
4S,8S,12R,16R,20R 1 — 1 2 — 1 — 
4S,8R,12R,16R,20S — 1 1 2 — — 1 
4S,8R,12R,16S,20R — 1 — 2 1 — 1 
4S,8R,12S,16R,20R — 1 — 1 2 1 — 
4S,8R,12R,16R,20R — 1 2 1 — 1 — 

 

After Table 4.2 was set up, the branched methyl region of the fourteen 1H and 13C NMR 

spectra of 4,8,12,16,20-pentamethylheptacosanol were predicted based on the same method 

described in Section 4.1.  The predicted 1H NMR spectra are shown in Figure 4.6, and the 

predicted 13C NMR spectra are shown in Figure 4.7. 

 

Figure 4.6. 1H NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol 

81 
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Figure 4.7. 13C NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol 
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As shown in the predicted 1H NMR spectra, there are four spectra that contain nine 

signals (one triplet and three doublets), eight spectra that contain 11 signals (one triplet and four 

doublets), and two spectra that contain 13 signals (one triplet and five doublets) signals.  And 

from the predicted 13C NMR spectra, there are four spectra that contain three signals, eight 

spectra that contain 4 signals, and two spectra that contain five signals.  For the same reason 
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discussed in Section 4.1, the types of the three middle methyl groups determines how many 

signals appear in both 1H and 13C NMR spectra.  If all three middle methyl groups are the same 

type, they would all overlap to give nine signals (one triplet and three doublets) in the 1H NMR 

spectra, and three signals in the 13C NMR with the overlapping signals giving triple intensities 

[e.g., (4S,8S,12S,16S,20S)-, (4S,8S,12R,16R,20S)-, (4S,8R,12R,16S,20S)-, and (4S,8R,12S, 

16R,20S)-81].  If the two middle methyl groups are the same type and one middle methyl group 

is a different type, the same type of methyl group would overlap to give 11 signals (one triplet 

and four doublets) in the 1H NMR spectra, and 4 signals in the 13C NMR spectra with the 

overlapping signals giving double intensities [e.g., (4S,8S,12S,16S,20R)-, (4S,8S,12R,16S,20S)-, 

(4S,8S,12R,16R,20R)-, (4S,8S,12S,16R,20R)-, (4S,8S,12R,16S,20R)-, (4S,8R,12S,16S,20R)-, 

(4S,8R,12R,16S,20R)-, (4S,8R,12R,16R,20S)-, and (4S,8R,12R,16R,20R)-81].  Furthermore, if all 

three middle methyl groups are different types, then there would be 13 signals (one triplet and 

five doublets) in the 1H NMR spectra, and 5 signals in the 13C NMR with all the signals in equal 

intensities [e.g., (4S,8S,12S,16R,20S)- and (4S,8R,12S,16S,20S)-81].   
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5.0  SUMMARY AND CONCLUSION  

In summary, we successfully synthesized four isomers of 4,8,12-trimethylnonadecanol by FMS 

of three iterations of Roush crotylation, O-phenyl thionocarbonate formation (tagging), and Rh-

catalyzed hydroformylation.  DIBAL-H reduction and fluorous demixing gave four 

quasiisomers.  Global deoxygenation/detagging of each quasiisomer afforded the four target 

4,8,12-trimethylnonadecanols (Scheme 3.10).  The average yield per cycle (three steps) was 59% 

and the overall yield before fluorous demixing was 17.6% over 14 steps.  This FMS showcased 

the first utility of the fluorous O-phenyl thionocarbonate tags and the first successful demixing of 

quasiisomers with tags that only differ in one fluorine atom.  The global deoxygenation step was 

accomplished cleanly using the new diMe-Imd-BH3 reagent.  Overall, this FMS used only six 

fluorine atoms to encode for four quasiisomers, making this synthesis by far the most efficient 

FMS to date.   

The spectroscopic analyses of the 1H and 13C NMR spectra of the four isomers of 4,8,12-

trimethylnonadecanol revealed there are seven principle methyl types in a repeating 

polyisoprenoid system.  A way to predict the appearance of the branched methyl group region 1H 

and 13C NMR of 4,8,12,16-tetramethyltricosanol (four branched methyl groups) and 

4,8,12,16,20-pentamethyl-heptacosanol (five branched methyl groups) by identifying the number 

and nature of the branched methyl group, then applying the appropriate methyl group chemical 
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shifts was developed.  These predictions set the stage for a direct NMR-based identification of 

the methyl configurations of polyisoprenoid natural products such as the side chain of MPM-1.    
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6.0  EXPERIMENTAL 

General information:  All reactions were performed under argon atmosphere unless otherwise 

noted.  All reaction solvents were freshly dried by passing through a column of activated 

alumina.43 All reagents were purchased commercially and used without further purification 

unless otherwise mentioned.  Reaction progresses were monitored by TLC with 0.25 mm E. 

Merck precoated silica gel plates.  All crude mixtures were purified by flash chromatography 

with silica gel 60 (0.040‒0.063 mm) supplied by Sorbent Technology unless otherwise stated.  

Products and reactions were analyzed by 1H, 13C, and 19F NMR spectrometry, FT-IR, optical 

rotation, and HRMS.   

The NMR spectra were recorded on a Bruker Advance III 400 MHz, a Bruker Advance 

III 600 MHz, or a Bruker Advance III 700 MHz spectrometer using deuterated chloroform 

spiked with 1 mole% trimethylsilane (TMS), unless otherwise indicated.  The signals are given 

as in part per million (, ppm) and were determined relative to the proton and carbon resonance 

of TMS at 0 ppm as the internal standard.  In the case of 19F NMR spectrometry, no internal 

standard was used.  The spectral data of single molecules were reported in the following order: 

chemical shift (d), multiplicity, coupling constant (Hz), number of nuclei.  The spectral data of 

mixtures (with the designation M- before number) were not reported, but the spectra are 

provided in appendix E. 
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Infrared (IR) spectra were taken on a Mattson Genesis FT-IR spectrometer as thin film on 

NaCl plate and the peaks are reported in wave numbers (cm-1).  Optical rotations were measured 

on a Perkin-Elmer 241 polarimeter at a Na D-line ( = 589 nm) using a 1 dm cell.  HPLC 

analyses and separations were performed on a Waters 600E system with a Waters 2487 dual 

absorption detector.  Compound names were obtained from ChemDraw Ultra 12.0 (Cambridge 

Soft Corp.). 

 

(4S,5S)-Diisopropyl 2-((E)-but-2-en-1-yl)-1,3,2-dioxaborolane-4,5-dicarboxylate (33): To a 

stirring suspension of KOtBu (23.8 g, 0.21 mol.) in THF (175 mL, freshly distilled) at ‒78 °C 

was added E-butene (53 mL, 1.06 mol.) via cannula. After addition of E-butene, n-BuLi (133 

mL, 1.6 M) was added while carefully maintaining the internal temperature to be below ‒65 °C.  

The resulting orange suspension was warmed to ‒25 °C and stirred for 30 min before cooling to 

‒78 °C.  Triisopropyl borate was then added neat over 45 min (keeping the internal temperature 

at ‒70 °C).  After addition of the borate, the mixture was stirred for 10 more min then poured 

into 1N HCl (200 mL, aq).  The pH was then adjusted to pH 1 by addition of 1N HCl solution.  

Diisopropyl-L-tartrate (48.82 g, 0.21 mol.) in ether (50 mL, dry) was then added to the reaction 

mixture and the aqueous and organic layers were separated. The aqueous layer was washed with 

ether (4 x 20 mL) and the organic layer was dried over MgSO4 for 2 h.  The solution was then 

filtered under argon atmosphere and concentrated.  The crude product was diluted with toluene 

(150 mL, dry) and used in subsequent reactions without further purification.  The concentration 

of the solution was determined to be 1 M. 
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(4R,5R)-Diisopropyl 2-((E)-but-2-en-1-yl)-1,3,2-dioxaborolane-4,5-dicarboxylate (34):  The 

same procedure used in the synthesis of Roush reagent 33 was used to make 34, the only 

difference was the use of diisopropyl-D-tartrate (48.82 g, 0.21 mol) instead of diisopropyl-L-

tartrate.  The crude product was diluted with toluene (150 mL, dry) and used in subsequent 

reactions without further purification.  The solution was determined to have a concentration of 

0.53 M. 

 

6-(Diphenylphosphino)pyridin-2(1H)-one (41):  The ligand for Rh-catalyzed hydroformylation 

was synthesized in a 3-step procedure from 2,6-dichloropyridine.  The synthesis and NMR 

information were reported by Breit et al.
39 

 

General Procedure 1: the synthesis of fluorinated phenyl chlorothionoformates (54‒59) 

The corresponding fluorinated phenol in 1N aq. NaOH was added dropwise to a solution of 

thiophosgene in CHCl3.  The resulting mixture was stirred at 0 °C for 1.5 h.  The reaction 

progress was monitored by TLC.  After complete consumption of the starting phenol, the 

reaction was quenched by 1N HCl.  The organic layer was dried over MgSO4 and then 

concentrated.  The crude product was used in the next step without further purification. 
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General Procedure 2: the Roush crotylboration reaction of aldehydes 

To a solution of Roush reagent (33 or 34, 3 equiv) in toluene was added powdered 4 Å molecular 

sieves (20 mg/mL), and then cooled to ‒78 °C.  After 10 min, the corresponding aldehyde was 

added neat to the mixture and the resulting solution was stirred at ‒78 °C for further 3 h.  2 N 

NaOH was added to quench the reaction over 20 min at 0 °C then filtered through a pad of celite.  

The aqueous layer was extracted with ether (10 mL, 3 times).  The combined organic layer was 

dried with K2CO3 and concentrated.  The crude product was purified by column chromatography 

(9:1 hexane-diethyl ether).   

General Procedure 3: thionocarbonate formation (fluorous tagging) 

To the allylic alcohol in CH2Cl2 was added pyridine (anhydrous) at 25 °C.  After 10 min, the 

reaction mixture was cooled to 0 °C.  O-Phenyl chlorothionoformate (2 equiv) was added 

dropwise into the reaction mixture, which was slowly warmed to room temperature overnight (16 

h).  Aqueous NH4Cl was added to quench the reaction at 0 °C followed by aqueous layer 

extraction with CH2Cl2 (10 mL, 3 times).  The combined organic layer was dried over MgSO4 

and then concentrated.  The crude product was purified by column chromatography (99:1 

hexanes-diethyl ether). 

General procedure 4, Rh-catalyzed hydroformylation:  

The pyridone ligand 41 (20 mol%) and Rh (CO)2acac (4 mol%) were added to THF under Ar, 

and the resulting mixture was stirred at room temp.  After 10 min, the corresponding alkene was 

added neat to the premixed catalysts in THF.  The resulting mixture was transported to the 

pressure vessel and stirred at 60 °C under 150 psi of CO/H2 for 15 h.  After complete 
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consumption of the starting alkene, the solvent was evaporated under reduced pressure and the 

crude mixture was purified by column chromatography (3:1 hexanes-diethyl ether).   

 

(3R,4S)-3-Methyldec-1-en-4-ol (30): This crotylation reaction was performed according to 

General Procedure 2 using heptanal (12 g, 105.1 mmol) and Roush reagent 33 (315 ml, 315 

mmol).  Allylic alcohol (3R,4S)-30 was isolated in 16 g, 89% yield as a colorless oil: [ ]    = ‒

0.66 (c = 1.54, CHCl3);  1H NMR (CDCl3, 300 MHz, ppm) = 5.755 (ddd, J = 8.4, 11.3, 16.7 

Hz, 1H), 5.106 (d, J = 11.0 Hz, 1H), 5.087 (d, J = 16.8 Hz, 1H), 3.387 (s br, 1H), 2.192 (ddq, J = 

6.7, 6.8, 6.9 Hz, 1H), 1.200‒1.600 (m, 11H), 1.030 (d, J = 6.9 Hz, 3H), 0.882 (t, J = 6.0 Hz, 3H); 

13C NMR (CDCl3, 75 MHz, ppm) =140.40, 116.27, 74.70, 44.14, 34.26, 31.87, 29.42, 25.71, 

22.66, 16.32, 14.11; FTIR (thin film) vmax 3372, 3075, 2956, 2928, 2857, 1639, 1459, 999, 961, 

912 cm-1; HRMS calcd for C11H22O: 170.1668, found 170.1670.  

 

O-((3R,4S)-3-Methyldec-1-en-4-yl) O-phenyl carbonothioate 42:  This acylation reaction was 

performed according to General Procedure 3 using (3R,4S)-3-methyldec-1-en-4-ol 30 (24 g, 141 

mmol) and O-phenyl chlorothionoformate (24.3 g, 141 mmol).  Alkene (3R,4S)-42 was isolated 

in 34 g, 78% yield as a colorless oil: [ ]    = ‒12.19 (c = 2.33, CHCl3); 1H NMR (CDCl3, 300 

MHz, ppm) = 7.415 (t, J = 7.5 Hz, 2H), 7.283 (t, J = 7.5 Hz, 1H), 7.095 (d, J = 7.8 Hz, 2H), 

5.871 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.372 (dt, J = 4.5, 8.4 Hz,1H), 5.113 (d, J = 6.3 Hz, 1H), 
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5.102 (d, J = 16.8 Hz, 1H), 2.648 (ddq, J = 6.7, 6.8, 6.9 Hz, 1H), 1.500-1.850 (m, 2H), 1.200-

1.500 (m, 8H), 1.099 (d, J = 6.9 Hz, 3H), 0.891 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl3, 75 MHz, 

ppm) =195.17, 153.38, 138.86, 129.45, 126.42, 122.03, 116.06, 88.59, 41.10, 31.69, 30.65, 

29.17, 25.25, 22.59, 15.70, 14.08; FTIR (thin film) vmax 3076, 2956, 2928, 2857, 1592, 1490, 

1276, 1197, 1002, 918, 768 cm-1; HRMS calcd for C18H26O2S: 306.1658, found 306.1653.  

 

O-((4R,5S)-4-Methyl-1-oxoundecan-5-yl) O-phenyl carbonothioate 43: This Rh-catalyzed 

hydroformylation reaction was performed according to General Procedure 4 using O-((3R,4S)-3-

methyldec-1-en-4-yl) O-phenyl carbonothioate 42 (10 g, 330 mmol), pyridone ligand 41 (3.2 g, 

100 mmol), and Rh catalyst (0.64 g, 20 mmol).  Aldehyde (4R,5S) 43 was isolated in 9.3 g, 85% 

yield as a colorless oil:  [ ]    = ‒2.30 (c = 1.87, CHCl3); 1H NMR (CDCl3, 300 MHz, ppm) = 

9.799 (t,  J = 1.2 Hz, 1H), 7.421 (t, J = 7.5 Hz, 2H), 7.315 (t, J = 7.5 Hz, 1H), 7.099 (d, J = 7.8 

Hz, 2H), 5.320 (quint, J = 4.5 Hz,1H), 2.476-2.593 (m, 2H), 2.008 (ddq, J = 6.7, 6.8, 6.9 Hz, 

1H), 1.200-1.833 (m, 12H), 0.983 (d, J = 6.9 Hz, 3H), 0.898 (t, J = 6.0 Hz, 3H); 13C NMR 

(CDCl3, 75 MHz, ppm) =201.94, 195.08, 153.34, 129.67, 129.49, 126.49, 122.00, 121.83, 

88.98, 41.56, 35.32, 34.68, 31.70, 29.69, 29.22, 25.33, 24.19, 22.67, 22.60, 14.92, 14.15, 14.10; 

FTIR vmax 2956. 2928, 2857, 2720, 1725, 1592, 1490, 1458, 1358, 1282, 1197, 1003, 770 cm-1; 

HRMS calcd for C19H28O3SNa: 359.1657, found 359.1672.  
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O-((7S,8R,11S,12R)-11-Hydroxy-8,12-dimethyltetradec-13-en-7-yl) O-phenyl carbono-

thioate 45:  This crotylation reaction was performed according to General Procedure 2 using 

aldehyde (4R,5S)-43 (1.5 g, 4.46 mmol) and Roush reagent 33 (8.9 ml, 8.9 mmol).  Allylic 

alcohol (3R,4S,7R,8S)-45 was isolated in 1.46 g, 83% yield as a colorless oil: [ ]    = ‒2.64 (c = 

1.67, CHCl3); 1H NMR (CDCl3, 300 MHz, ppm) = 7.413 (t, J = 7.5 Hz, 2H), 7.281 (t, J = 7.5 

Hz, 1H), 7.102 (d, J = 7.8 Hz, 2H), 5.753 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.347 (s br, 1H), 

5.133 (d, J = 6.9 Hz, 1H), 5.120 (d, J = 17.1 Hz, 1H), 3.394 (s br, 1H), 2.217 (ddq, J = 6.7, 6.8, 

6.9 Hz, 1H), 2.010 ( s br, 1H), 1.200-1.800 (m, 14H), 1.043 (d, J = 6.9 Hz, 3H), 0.976 (d, J = 6.9 

Hz, 3H) 0.896 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl3, 75 MHz, ppm) =195.07, 153.38, 140.25, 

140.16, 129.43, 126.39, 122.04, 116.51, 116.47, 89.78, 89.53, 74.83, 74.57, 44.23, 44.16, 35.77, 

31.71, 31.65, 29.56, 29.38, 29.23, 25.44, 25.38, 22.60, 16.36, 16.31, 15.06, 14.84, 14.08; FTIR 

vmax 3443, 3072, 2957, 2928, 2859 1592, 1490, 1458, 1369, 1283, 1197, 1002, 914, 769 cm-1; 

HRMS calcd for C23H36O3SNa: 415.2283, found 415.2260.  

 

O-((7S,8R,11R,12S)-11-Hydroxy-8,12-dimethyltetradec-13-en-7-yl) O-phenyl carbono-

thioate 45:  This crotylation reaction was performed according to General Procedure 2 using 

aldehyde (4R,5S)-43 (1.2 g, 3.5 mmol) and Roush reagent 34 (10.1 ml, 5.3 mmol).  Allylic 
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alcohol (3S,4R,7R,8S)-45 was isolated in 1.2 g, 83% yield as a colorless oil: [ ]    = ‒0.70 (c = 

1.62, CHCl3); 1H NMR (CDCl3, 300 MHz, ppm) = 7.410 (t, J = 7.5 Hz, 2H), 7.279 (t, J = 7.5 

Hz, 1H), 7.101 (d, J = 7.8 Hz, 2H), 5.752 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.340 (s br, 1H), 

5.129 (d, J = 6.9 Hz, 1H), 5.118 (d, J = 17.1 Hz, 1H), 3.389 (s br, 1H), 2.212 (ddq, J = 6.7, 6.8, 

6.9 Hz, 1H), 1.994 ( s br, 1H), 1.200-1.800 (m, 14H), 1.039 (d, J = 6.9 Hz, 3H), 0.971 (d, J = 6.9 

Hz, 3H) 0.896 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl3, 75 MHz, ppm) = 195.10, 153.35, 140.24, 

140.14, 129.44, 126.40, 122.03, 116.53, 116.49, 89.77, 89.52, 74.80, 74.55, 44.23, 44.16, 35.77, 

31.93, 31.70, 31.62, 29.70, 29.53, 29.35, 29.23, 28.50, 28.21, 25.43, 25.38, 22.60, 16.36, 16.31, 

15.04,  14.82,  14.08;  FTIR vmax  3439, 3072, 2956, 2928, 2858, 1592, 1490, 1458, 1368, 1283, 

1197, 1002, 914, 768 cm-1; HRMS calcd for C23H36O3SNa: 415.2283, found 415.2267.  

 

O,O'-((3R,4S,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O,O'-diphenyl dicarbonothioate 

53:  This acylation reaction was performed according to General Procedure 3 using allylic 

alcohol (3R,4S,7R,8S)-45 (2.2 g, 5.6 mmol) and O-phenyl chlorothionoformate (1.06 g, 6.2 

mmol).  Alkene (3R,4S,7R,8S)-53 was isolated in 2.5 g, 84% yield as a colorless oil: [ ]    = ‒

1.68 (c = 1.79, CHCl3); 1H NMR (CDCl3, 300 MHz, ppm) = 7.409 (t, J = 7.5 Hz, 4H), 7.269 (t, 

J = 7.5 Hz, 2H), 7.089 (d, J = 7.8 Hz, 4H), 5.761 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.282-5.386 

(m, 2H), 5.123 (d, J = 17.1 Hz, 1H), 5.112 (d, J = 6.9 Hz, 1H),  2.651 (ddq, J = 6.7, 6.8, 6.9 Hz, 

2H), 1.995 ( s br, 1H), 1.200-1.800 (m, 14H), 1.099 (d, J = 6.9 Hz, 3H), 0.981 (d, J = 6.9 Hz, 
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3H) 0.894 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl3, 75 MHz, ppm) = 195.13, 195.10, 153.33, 

138.72, 138.60, 129.45, 126.45, 126.42, 122.04, 122.01, 116.29, 89.35, 89.21, 88.42, 88.07, 

77.46, 77.24, 77.04, 76.61, 41.09,  35.81, 35.76, 31.70, 29.90, 29.77, 29.25, 28.26, 28.11, 27.92, 

27.51, 25.26, 22.60, 15.78, 15.60, 15.07, 14.99, 14.09; FTIR vmax 3072, 2058, 2929, 2858, 1592, 

1489, 1457, 1358, 1280, 1196, 1121, 1002, 919, 829, 769 cm-1; HRMS calcd for C30H40O4S2Na: 

551.2266, found 551.2318.  

 

O,O'-((3S,4R,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O'-(2-fluorophenyl) O-phenyl 

dicarbonothioate 60:  This acylation reaction was performed according to General Procedure 3 

using allylic alcohol (3S,4R,7R,8S)-45 (1.1 g, 2.8 mmol) and the crude mixture of O-2-

fluorophenyl chlorothionoformate 54 (0.85 g, 4.5 mmol).  Alkene (3S,4R,7R,8S)-60 was isolated 

in 1.3 g, 84% yield as a colorless oil: [ ]    = ‒1.22 (c = 1.05, CHCl3); 1H NMR (CDCl3, 400 

MHz, ppm) = 7.090‒7.425 (m, 9H), 5.777 (ddd, J = 8.1, 10.4, 17.1 Hz, 1H), 5.308-5.390 (m, 

2H), 5.128 (d, J = 18.1 Hz, 1H), 5.118 (d, J = 9.1 Hz, 1H), 2.665 (ddq, J = 6.7, 6.8, 6.9 Hz, 2H), 

1.931-2.002 ( m, 1H), 1.800-1.931 (m, 1H), 1.211-1.800 (m, 12H), 1.110 (d, J = 6.9 Hz, 3H), 

0.983 (d, J = 6.8 Hz, 3H) 0.894 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 

195.13, 194.03, 192.43, 155.63, 155.38, 153.39, 152.32, 152.05, 140.99, 140.83, 140.74, 140.58, 

138.51, 138.41, 129.47, 128.28, 128.18, 127.78, 127.69, 126.43, 124.75, 124.69, 124.55, 124.50, 

124.00, 123.68, 122.07, 117.31, 117.07,  117.01, 116.77,  116.40, 89.41, 89.25, 88.96, 41.14, 

35.79, 35.67, 31.72, 29.77, 29.68, 29.25, 28.35, 28.27, 27.81, 27.49, 25.35, 22.63, 15.76, 15.61, 
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15.06, 14.94, 14.11; FTIR vmax 3072, 2958, 2930, 2859, 1600, 1501, 1459, 1363, 1261, 1196, 

1101, 1001, 922, 845, 829, 762 cm-1; HRMS calcd for C30H39O4S2FNa: 569.2172, found 

569.2180. 

 

O,O'-((3S,4R,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O'-(4-fluorophenyl) O-phenyl 

dicarbonothioate 62:  This acylation reaction was performed according to General Procedure 3 

using allylic alcohol (3S,4R,7R,8S)-45 (2.2 g, 6.0 mmol) and O-4-fluorophenyl 

chlorothionoformate 56 (1.3 g, 6.7 mmol).  Alkene (3S,4R,7R,8S)-62 was isolated in 2.6 g, 85% 

yield as a colorless oil: [ ]    = ‒1.35 (c = 1.11, CHCl3); 1H NMR (CDCl3, 400 MHz, ppm) = 

7.410 (t, J = 7.5 Hz, 2H), 7.293 (t, J = 7.5 Hz, 1H), 7.099 (d, J = 7.8 Hz, 2H), 7.049 (d, J = 6.3 

Hz, 4H), 5.785 (ddd, J = 8.1, 10.4, 17.1 Hz, 1H), 5.308-5.390 (m, 2H), 5.128 (d, J = 18.1 Hz, 

1H), 5.118 (d, J = 9.1 Hz, 1H), 2.665 (ddq, J = 6.7, 6.8, 6.9 Hz, 2H), 1.965-2.033 ( m, 1H), 

1.833-1.936 (m, 1H), 1.220-1.806 (m, 12H), 1.107 (d, J = 6.9 Hz, 3H), 0.983 (d, J = 6.8 Hz, 3H) 

0.896 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 195.23, 195.16, 161.83, 159.42, 

159.39, 153.42, 149.39, 149.36, 149.24, 149.22, 138.70, 138.59, 129.50, 126.47, 123.63, 123.59,

123.55, 123.41, 123.32,  122.09,  116.59,  116.36, 116.31, 116.18, 116.14, 116.07, 115.95, 89.34, 

89.21, 88.70, 88.32, 41.16,  36.11, 35.86, 34.71, 34.56, 31.75, 31.63, 30.02, 29.89, 29.30, 29.10, 

28.32, 28.13, 27.99, 27.56, 25.32, 25.29, 22.70, 22.65,20.75, 18.81, 15.82, 15.64, 15.13, 15.03, 

14.18, 14.14; FTIR vmax  3076, 2958, 2929, 2858, 1502, 1280, 1191, 1003, 922, 839, 738 cm-1; 

HRMS calcd for C30H39O4S2FNa: 569.2172, found 569.2173. 
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Mixture of O,O'-((4R,5S,8R,9S)-4,8-dimethyl-1-oxopentadecane-5,9-diyl) O,O'-diphenyl 

dicarbonothioate and O,O'-((4S,5R,8R,9S)-4,8-dimethyl-1-oxopentadecane-5,9-diyl) O'-(2-

fluorophenyl) O-phenyl dicarbonothioate (M-65):  This Rh-catalyzed hydroformylation 

reaction was performed according to General Procedure 4 using 1:1 mixture of (3R,4S,7R,8S)-53 

+ (3S,4R,7R,8S)-60 (2.0 g, 3.8 mmol), pyridone ligand 41 (0.18 g, 12.2 mmol), and Rh catalyst 

(0.04 g, 2.5 mmol).  Aldehyde M-65 was isolated in 4.4 g, 82% yield as a colorless oil: HRMS 

calcd for C31H42O5S2Na1: 581.2371, found 581.2336; calcd for C31H41O5S2FNa: 599.2277, found 

599.2228. 

 

Mixture of O,O'-((4R,5S,8R,9S)-4,8-dimethyl-1-oxopentadecane-5,9-diyl) O,O'-diphenyl 

dicarbonothioate and O,O'-((4S,5R,8R,9S)-4,8-dimethyl-1-oxopentadecane-5,9-diyl) O'-(4-

fluorophenyl) O-phenyl dicarbonothioate M-72:  This Rh-catalyzed hydroformylation reaction 

was performed according to General Procedure 4 using 1:1 mixture of (3R,4S,7R,8S)-53 + 

(3S,4R,7R,8S)-62 (5.08 g, 9.4 mmol), pyridone ligand 41 (0.46 g, 1.7 mmol), and Rh catalyst 

(0.09 g, 0.33 mmol).  Aldehyde M-72 was isolated in 4.4 g, 82% yield as a colorless oil: HRMS 
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calcd for C31H42O5S2Na: 581.2371, found 581.2393; calcd for C31H41O5S2FNa: 599.2277, found 

599.2264. 

 

Mixture of O,O'-((7S,8R,11S,12R,15S,16R)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-

7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(2-fluorophenyl) O,O'-((7S,8R,11R,12S, 

15S,16R)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-7,11-diyl) O-phenyl dicarbono-

thioate M-66: This Roush crotylation reaction was performed according to General Procedure 2 

using mixture aldehyde M-65 (0.6 g, 0.52 mmol) and Roush reagent 33 (1.0 ml, 1.0 mmol).  

Allylic alcohol M-66 was isolated in 0.52 g, 80% yield as a colorless oil: HRMS calcd for 

C31H50O5S2Na1: 637.2997, found 637.3007; HRMS calcd for C23H36O3S1F1Na1: 655.2903, found 

655.2900.  

 

Mixture of O,O'-((7S,8R,11S,12R,15S,16R)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-

7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(4-fluorophenyl) O,O'-((7S,8R,11R,12S, 

15S,16R)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-7,11-diyl) O-phenyl dicarbono-

thioate M-73:  This Roush crotylation reaction was performed according to General Procedure 2 

using mixture aldehyde M-72 (2.16 g, 3.8 mmol) and Roush reagent 33 (8.0 ml, 8.0 mmol).  
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Allylic alcohol M-73 was isolated in 2.0 g, 84% yield as a colorless oil: HRMS calcd for 

C31H50O5S2Na: 637.2997, found 637.3015; HRMS calcd for C23H36O3SFNa: 655.2903, found 

655.2964.  

 

Mixture of O,O'-((7S,8R,11S,12R,15R,16S)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-

7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(2-fluorophenyl) O,O'-((7S,8R,11R,12S, 

15R,16S)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-7,11-diyl) O-phenyl dicarbono-

thioate M-67: This Roush crotylation reaction was performed according to General Procedure 2 

using mixture aldehyde M-65 (0.6 g, 0.52 mmol) and Roush reagent 34 (1.0 ml, 1 mmol).  

Allylic alcohol M-67 was isolated in 0.52 g, 79% yield as a colorless oil: HRMS calcd for 

C31H50O5S2Na: 637.2997, found 637.3005; HRMS calcd for C23H36O3SFNa: 655.2903, found 

655.2878.  

 

Mixture of O,O'-((7S,8R,11S,12R,15R,16S)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-

7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(4-fluorophenyl) O,O'-((7S,8R,11R,12S, 

15R,16S)-15-hydroxy-8,12,16-trimethyloctadec-17-ene-7,11-diyl) O-phenyl dicarbono-

thioate M-74: This Roush crotylation reaction was performed according to General Procedure 2 
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using mixture aldehyde M-72 (2.36 g, 4.16 mmol) and Roush reagent 34 (15 ml, 8.3 mmol).  

Allylic alcohol M-74 was isolated in 2.18 g, 83% yield as a colorless oil: HRMS calcd for 

C31H50O5S2Na: 637.2997, found 637.3016; HRMS calcd for C23H36O3SFNa: 655.2903, found 

655.2924.  

 

Mixture of O,O',O''-triphenyl O,O',O''((3R,4S,7R,8S, 11R,12S)-3,7,11-trimethyloctadec-1-

ene-4,8, 12-triyl) tri-carbonothioate and O'-(2-fluorophenyl) O,O''-diphenyl O,O',O''-

((3R,4S,7S,8R,11R,12S)-3,7,11-tri-methyloctadec-1-ene-4,8,12-triyl) tricarbonothioate M-

68:  This acylation reaction was performed according to General Procedure 3 using mixture 

allylic alcohol M-66 (0.3 g, 0.24 mmol) and O-phenyl chlorothionoformate (0.09 g, 0.54 mmol).  

Alkene M-68 was isolated in 0.32 g, 88% yield as a colorless oil: HRMS calcd for 

C42H54O6S3Na: 773.2980, found 773.2962; HRMS calcd for C42H53O6S3FNa: 791.2886, found 

791.2934.  

 

Mixture of O,O',O''-triphenyl O,O',O''((3R,4S,7R,8S, 11R,12S)-3,7,11-trimethyloctadec-1-

ene-4,8, 12-triyl) tricarbonothioate and O'-(4-fluorophenyl) O,O''-diphenyl O,O',O''-

((3R,4S,7S,8R,11R,12S)-3,7,11-tri-methyloctadec-1-ene-4,8,12-triyl) tricarbonothioate M-
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75: This acylation reaction was performed according to General Procedure 3 using mixture 

allylic alcohol M-73 (2.0 g, 3.1 mmol) and O-phenyl chlorothionoformate (0.61 g, 3.6 mmol).  

Alkene M-75 was isolated in 2.6 g, 86% yield as a colorless oil: HRMS calcd for C42H54O6S3Na: 

773.2980, found 773.2962; HRMS calcd for C42H53O6S3FNa: 791.2886, found 791.2870.  

 

Mixture of O''-(4-fluorophenyl) O,O'-diphenyl O,O',O''-((3S,4R,7R,8S,11R,12S)-3,7,11-

trimethyloctadec-1-ene-4,8, 12-triyl) tricarbonothioate and O''-(4-fluoro-phenyl) O'-(2-

fluorophenyl) O-phenyl O,O',O''-((3S,4R,7S,8R,11R,12S)-3,7,11-trimethyloctadec-1-ene-4,8, 

12-triyl) tricarbonothioate M-69: This acylation reaction was performed according to General 

Procedure 3 using allylic alcohol M-67 (0.3 g, 0.24 mmol) and O-4-fluorophenyl chlorothiono-

formate (0.1 g, 0.54 mmol).  Alkene M-69 was isolated in 0.32 g, 88% yield as colorless oil: 

HRMS calcd for C42H52O6S3F2Na: 809.2792, found 809.2755; HRMS calcd for C42H53O6S3FNa: 

791.2886, found 791.2934.  

 

Mixture of O''-(3,4-difluorophenyl) O,O'-diphenyl O,O',O''-((3S,4R,7R,8S,11R,12S)-3,7,11-

trimethyloctadec-1-ene-4,8, 12-triyl) tricarbonothioate and O''-(3,4-difluoro-phenyl) O'-(4-

fluorophenyl) O-phenyl O,O',O''-((3S,4R,7S,8R,11R,12S)-3,7,11-trimethyloctadec-1-ene-4,8, 
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12-triyl) tricarbonothioate M-76: This acylation reaction was performed according to General 

Procedure 3 using allylic alcohol M-74 (2.0 g, 3.16 mmol) and the crude product of O-3,4-

difluorophenyl chlorothiono-formate 57 (~0.70 g, 3.30 mmol).  Alkene M-76 was isolated in 2.2 

g, 88% yield as a colorless oil: HRMS calcd for C42H52O6S3F2Na: 809.2792, found 809.2757; 

HRMS calcd for C42H51O6S3F3Na: 827.2698, found 827.2710.  

 

Mixture of O,O',O''-triphenyl O,O',O''-((4R, 5S, 8R, 9S, 12R,13S)-4,8,12-trimethyl-1-

oxononadecane-5,9, 13-triyl) tricarbonothioate, O'-(2-fluorophenyl) O, O''-diphenyl O,O', 

O''-((4R,5S,8S,9R,12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothio-

ate, O''-(4-fluorophenyl) O,O'-diphenyl O,O',O''-((4S,5R,8R,9S,12R,13S)-4,8,12-trimethyl-1-

oxononadecane-5,9,13-triyl) tricarbonothioate, and O''-(4-fluorophenyl) O'-(2-fluoro-

phenyl) O-phenyl O,O',O''-((4S,5R,8S,9R,12R,13S)-4,8,12-trimethyl-1-oxononadecane-

5,9,13-triyl) tricarbonothioate M-70: This Rh-catalyzed hydroformylation reaction was 

performed according to General Procedure 4 using 1:1 mixture of M-68 plus M-69 (0.3 g, 0.39 

mmol), pyridone ligand 41 (0.07 g, 0.14 mmol), and Rh catalyst (0.007 g, 0.027 mmol).  

Aldehyde M-70 was isolated in 0.26 g, 83% yield as a colorless oil: HRMS calcd for 

C43H56O7S3Na1: 803.3086, found 803.3066; HRMS calcd for C43H55O7S3FNa: 821.2992, found 

821.3021; HRMS calcd for C43H54O7S3F2Na: 839.2897, found 839.2896. 
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Mixture of O,O',O''-triphenyl O,O',O''-((4R, 5S, 8R, 9S, 12R,13S)-4,8,12-trimethyl-1-

oxononadecane-5,9, 13-triyl) tricarbonothioate, O'-(4-fluorophenyl) O, O''-diphenyl O,O', 

O''-((4R,5S,8S,9R,12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothio-

ate, O''-(3,4-difluorophenyl) O,O'-diphenyl O,O', O''-((4S,5R,8R,9S,12R,13S)-4,8,12-

trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothioate, and O''-(3,4-difluorophenyl) O'-

(4-fluorophenyl) O-phenyl O,O',O''-((4S,5R,8S,9R,12R,13S)-4,8,12-trimethyl-1-oxo-

nonadecane-5,9,13-triyl) tricarbonothioate M-77: This Rh-catalyzed hydroformylation 

reaction was performed according to General Procedure 4 using 1:1 mixture of M-75 plus M-76 

(3.6 g, 4.6 mmol), pyridone ligand 41 (0.81 g, 1.6 mmol), and Rh catalyst (0.09 g, 0.32 mmol).  

Aldehyde M-77 was isolated in 3.0 g, 80% yield as a colorless oil: HRMS calcd for 

C43H56O7S3Na: 803.3086, found 803.3066; HRMS calcd for C43H55O7S3FNa: 821.2992, found 

821.2988; HRMS calcd for C43H54O7S3F2Na: 839.2897, found 839.2916; HRMS calcd for 

C43H53O7S3F3Na: 857.2803, found 857.2819.  

 

Mixture of O,O',O''-((4R,5S,8R,9S,12R,13S)-1-hydroxy-4,8,12-trimethylnonadecane-5,9,13-

triyl) O,O',O''-triphenyl tricarbonothioate, O'-(2-fluorophenyl) O,O',O''-((4R,5S,8S,9R, 
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12R,13S)-1-hydroxy-4,8,12-tri-methylnonadecane-5,9,13-triyl) O,O''-diphenyl tri-carbono-

thioate, O''-(4-fluorophenyl) O,O',O''-((4S,5R,8R,9S,12R,13S)-1-hydroxy-4,8,12-trimethyl-

nonadecane-5,9,13-triyl) O,O'-diphenyl tricarbonothioate, and O''-(4-fluorophenyl) O'-(2-

fluorophenyl) O,O',O''-((4S,5R,8S,9R,12R,13S)-1-hydroxy-4,8,12-trimethylnonadecane-5,9, 

13-triyl) O-phenyl tricarbonothioate M-71:  To a solution of M-70 in THF (4 mL) at 0 °C was 

added DIBAL-H (0.30 mL, 0.29 mmol).  The reaction was stirred for 3 h at 0 °C.  The reaction 

was quenched by addition of saturated aq NH4Cl (1 mL) followed by extraction of the aqueous 

layer with Et2O (5 mL, 3 times).  The combined organic layers was dried over MgSO4 and 

concentrated.  The crude product was purified by column chromatography (9:1 hexanes-

diethylether).  Mixture alcohol M-71 was isolated in 0.14 g, 71.5% yield as a colorless viscous 

oil: HRMS calcd for C43H58O7S3Na: 805.3242, found 805.3220; HRMS calcd for 

C43H57O7S3F1Na: 823.3148, found 823.3088; HRMS calcd for C43H56O7S3F2Na: 841.3054, 

found 841.3113.  

 

Mixture of O,O',O''-((4R,5S,8R,9S,12R,13S)-1-hydroxy-4,8,12-trimethylnonadecane-5,9,13-

triyl) O,O',O''-triphenyl tricarbonothioate, O'-(4-fluorophenyl) O,O',O''-((4R,5S,8S,9R, 

12R,13S)-1-hydroxy-4,8,12-trimethylnonadecane-5,9,13-triyl) O,O''-diphenyl tri-carbono-

thioate, O''-(3,4-difluorophenyl) O,O',O''-((4S,5R,8R,9S,12R,13S)-1-hydroxy-4,8, 12-tri-

methylnonadecane-5,9,13-triyl) O,O'-diphenyl tricarbonothioate, and O''-(3,4-difluoro-

phenyl) O'-(4-fluorophenyl) O,O',O''-((4S,5R,8S,9R,12R,13S)-1-hydroxy-4,8,12-trimethyl-
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nonadecane-5,9,13-triyl) O-phenyl tricarbonothioate M-78:  To a solution of M-77 in THF 

(10 mL) at 0 °C was added DIBAL-H (1.95 mL, 1.95 mmol.).  The reaction was stirred for 3 h at 

0 °C.  The reaction was quenched with addition of saturated aq NH4Cl (3 mL) followed by 

extraction of the aqueous layer with Et2O (5 mL, 3 times).  The combined organic layers was 

dried over MgSO4 and concentrated.  The crude product was purified by column chromatography 

(9:1 hexanes-diethylether).  Mixture alcohol M-78 was isolated in 0.88 g, 88% yield as a 

colorless viscous oil: HRMS calcd for C43H58O7S3Na: 805.3242, found 805.3287; HRMS calcd 

for C43H57O7S3FNa: 823.3148, found 823.3119; HRMS calcd for C43H56O7S3F2Na: 841.3054, 

found 841.3100; HRMS calcd for C43H55O7S3F3Na: 859.2960, found 859.3012.  

 

Fluorous HPLC demixing 

The F-HPLC demixing procedures and conditions were described in details in Section 3.2.4.  

The purity of each demixed product contain ~70% of the title product and ~10% of each of the 

other quasiisomers as fully explained in section 3.3.3. 

 

O,O',O''-((4R,5S,8R,9S,12R,13S)-1-Hydroxy-4,8,12-trimethylnonadecane-5,9,13-triyl) 

O,O',O''-triphenyl tricarbonothioate [(4R,5S,8R,9S,12R,13S)-78]: (4R,5S,8R,9S,12R,13S)-78 

was obtained in 32 mg, 74% recovery: [ ]    = +9.32 (c = 0.21, CHCl3); 1H NMR (CDCl3, 400 

MHz, ppm) = 7.395 (t, J = 7.8 Hz, 4H), 7.347 (t, J = 7.8 Hz, 2H), 7.266 (t, J = 7.8Hz 3H), 

7.098 (d, J = 7.7 Hz,  6H), 5.323-5.344  (m, 3H), 3.638 (t, J =6.1, 2H), 1.969-2.036 (m, 3H), 
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1.251-1.952 (m, 22H), 1.007 (d, J = 6.8 Hz, 3H), 1.001 (d, J = 6.3 Hz, 3H), 0.985 (d, J = 6.7 Hz, 

3H), 0.891 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 195.11, 195.08, 153.36, 

153.33, 153.30, 129.46, 126.44, 122.04, 122.02, 89.46, 89.14, 89.11, 89.06, 62.96, 35.99, 35.91, 

35.88, 35.62, 31.70, 30.23, 30.20, 30.04, 29.77, 29.26, 29.25, 28.47, 28.33, 28.27, 28.06, 28.00, 

27.86, 27.66, 27.58, 27.53, 27.41, 27.03, 25.28, 22.60, 15.15, 15.10, 15.04, 14.97, 14.93, 14.87, 

14.09; FTIR vmax 3354, 3044, 2959, 2927, 2857, 1592, 1489, 1457, 1359, 1281, 1197, 1003, 769 

cm-1; HRMS calcd for C43H58O7S3Na: 805.3242, found 805.3222. 

 

O'-(4-Fluorophenyl) O,O',O''-((4R,5S,8S,9R,12R,13S)-1-hydroxy-4,8,12-trimethylnona-

decane-5,9,13-triyl) O,O''-diphenyl tricarbonothioate [(4R,5S,8S,9R,12R,13S)-78]: (4R,5S, 

8S,9R,12R,13S)-78 was obtained in 28 mg, 72% recovery: [ ]    = +2.33 (c = 0.32, CHCl3); 1H 

NMR (CDCl3, 400 MHz, ppm) = 7.390 (t, J = 7.8 Hz, 4H), 7.383 (t, J = 7.8 Hz, 2H), 7.274 (t, J 

= 7.8Hz 3H), 7.098 (d, J = 8.2 Hz, 2H), 7.091 (d, J = 8.3 Hz, 2H), 7.001-7.068 (m, 4H), 5.313-

5.356  (m, 3H), 3.654 (t, J =6.0, 2H), 1.968-2.075 (m, 3H), 1.252-1.939 (m, 22H), 1.002 (d, J = 

6.5 Hz, 3H), 0.994 (d, J = 6.7 Hz, 6H), 0.891 (t, J = 6.6 Hz, 3H). ); 13C NMR (CDCl3, 100 MHz, 

ppm) = 195.29, 195.25, 195.17, 161.81, 159.38, 153.39, 153.34, 153.32, 149.23, 149.20, 

129.50, 126.50, 126.47, 123.68, 123.60, 122.08, 122.05, 116.30, 116.07, 89.44, 89.15, 89.06, 

62.96, 36.02, 35.89, 35.67, 31.73, 30.25, 30.22, 30.11, 29.87, 29.30, 28.52, 28.39, 28.32, 28.12, 

28.04, 27.88, 27.74, 27.57, 27.44, 27.06, 25.27, 22.63, 15.19, 15.14, 15.10, 15.04, 14.96, 14.92, 
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14.90, 14.12; FTIR vmax 3352, 2959, 2928, 2859, 1592, 1502, 1457, 1359, 1281, 1198, 1004, 738 

cm-1; HRMS calcd for C43H57O7S3FNa: 823.3148, found 823.3115. 

 

O''-(3,4-Difluorophenyl) O,O',O''-((4S,5R,8R,9S,12R,13S)-1-hydroxy-4,8,12-trimethylnona 

decane-5,9,13-triyl) O,O'-diphenyl tricarbonothioate [(4S,5R,8R,9S,12R,13S)-78]: (4S,5R, 

8R,9S,12R,13S)-78 was obtained in 30 mg, 71% recovery: [ ]    = ‒1.34 (c = 0.25, CHCl3); 1H 

NMR (CDCl3, 400 MHz, ppm) = 7.347-7.411 (m, 4H), 7.287-7.289 (m, 2H), 7.086-7.176 (m, 

5H), 6.952-7.001 (m, 1H), 6.823-6.865 (m, 1H), 5.323-5.344  (m, 3H), 3.638 (t, J =6.1, 2H), 

1.969-2.036 (m, 3H), 1.251-1.952 (m, 22H), 1.007 (d, J = 6.8 Hz, 3H), 1.001 (d, J = 6.3 Hz, 3H), 

0.985 (d, J = 6.7 Hz, 3H), 0.891 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 

195.22, 195.16, 194.64, 153.39, 153.35, 151.44, 149.91, 148.94, 148.80, 148.74, 148.70, 148.65, 

148.62, 148.57, 148.45, 129.50, 129.49, 126.52, 122.06, 118.45, 118.39, 118.35, 117.44, 117.25, 

112.51, 112.31, 90.10, 89.64, 89.42, 89.33, 89.11, 62.91, 53.46, 35.98, 35.88, 35.84, 35.61, 

31.72, 30.20, 30.02, 29.77, 29.28, 28.51, 28.39, 28.29, 28.12, 28.03, 27.89, 27.67, 27.47, 26.97, 

25.30, 22.62, 15.18, 15.11, 15.03, 14.97, 14.94, 14.87, 14.10; FTIR vmax 3385, 2959, 2928, 2858, 

1513, 1490, 1458, 1284, 1195, 1004, 771 cm-1; HRMS calcd for C43H56O7S3F2Na: 841.3054, 

found 841.3025. 
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O''-(3,4-Difluorophenyl) O'-(4-fluorophenyl) O,O',O''-((4S,5R,8S,9R,12R,13S)-1-hydroxy-

4,8,12-trimethyl-nonadecane-5,9,13-triyl) O-phenyl tricarbonothioate [(4S,5R,8S,9R,12R, 

13S)-78]: (4S,5R,8S,9R,12R,13S)-78 was obtained in 29 mg,  71% recovery: [ ]    = ‒5.81 (c = 

0.22, CHCl3); 1H NMR (CDCl3, 400 MHz, ppm) = 7.347-7.412 (m, 2H), 7.287-7.297 (m, 1H), 

7.086-7.185 (m, 7H), 6.945-7.001 (m, 1H), 6.818-6.861 (m, 1H), 5.289-5.352  (m, 3H), 3.654 (t, 

J =6.1, 2H), 1.955-2.080 (m, 3H), 1.195-1.942 (m, 22H), 1.007 (d, J = 6.7 Hz, 3H), 0.994 (d, J = 

6.5 Hz, 3H), 0.986 (d, J = 6.7 Hz, 3H), 0.891 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz, 

ppm) = 195.24, 195.15, 194.65, 161.82, 159.38, 153.36, 153.32, 151.43, 151.29, 150.03, 

149.91, 149.14, 149.12, 148.80, 148.68, 148.65, 148.60, 148.57, 147.57, 147.45, 129.47, 126.46, 

123.61, 123.52, 122.05, 118.38, 118.34, 118.29, 117.43, 117.24, 116.30, 116.06, 112.49, 112.30, 

90.06, 89.60, 89.36, 89.11, 89.07, 88.86, 62.90, 35.95, 35.89, 35.66, 31.71, 30.20, 30.10, 29.85, 

29.28, 28.50, 28.37, 28.28, 28.11, 28.02, 27.86, 27.62, 27.58, 27.43, 27.01, 26.95, 25.24, 22.61, 

15.11, 14.96, 14.89, 14.86, 14.09; FTIR vmax 3377, 2959, 2929, 2859, 1504, 1290, 1198, 1005, 

839, 796, 772, 738 cm-1; HRMS calcd for C43H55O7S3F3Na: 859.2960, found 859.2902.  

 

General Procedure 5: radical deoxygenation 

To a solution of triphenylthionocarbonate tagged trimethylnonadecanol and 5 equiv of dimethyl-

imidazolium carbene-borane (diMe-Imd-BH3) in benzene-d were added AIBN.  The reaction 

mixture was heated at 80 °C.  After 2 h, the solvent was evaporated and the residue was first 
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extracted with hexanes (3 x 5 mL) then concentrated.  The crude product was isolated by column 

chromatography (9:1) hexane-diethyl ether. 

 

 

(4S,8S,12S)-4,8,12-Trimethylnonadecan-1-ol [(4S,8S, 12S)-79]:  This deoxygenation reaction 

was performed according to General Procedure 5 using triphenylthionocarbonate 

(4R,5S,8R,9S,12R,13S)-78 (0.020 g, 0.024 mmol), diMe-Imd-BH3 (0.037 g, 0.12 mmol), and 

AIBN (0.020 g, 0.12 mmol). Alcohol (4S,8S,12S)-79 was obtained in 0.006 g, 69% yield: 

[ ] 
   =  ‒7.2 (c = 0.28, CHCl3); 1H NMR (CDCl3, 700 MHz, ppm) = 3.635 (t, J = 6.6 Hz, 2H), 

1.664‒1.504 (m, 2H), 1.443‒1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.874 (d, J = 6.6 Hz, 3H), 

0.840 (d, J = 6.6 Hz, 6H); 13C NMR (CDCl3, 100 MHz, ppm) = 63.51, 37.43, 37.37, 37.33, 

37.16, 37.06, 33.00, 32.90, 32.80, 32.78, 32.65, 31.94, 30.36, 30.00, 29.42, 27.10, 25.33, 25.18, 

24.47, 24.44, 22.71, 19.79, 19.77, 19.67, 14.15; FTIR vmax 3333, 2959, 2924, 2854 cm-1; HRMS 

calcd for C22H45O: 325.3470, found 325.3443.  

 

 (4S,8R,12S)-4,8,12-Trimethylnonadecan-1-ol [(4S,8R, 12S)-79]: This deoxygenation reaction 

was performed according to General Procedure 5 using triphenylthionocarbonate 

(4R,5S,8S,9R,12R,13S)-78 (0.020 g, 0.025 mmol), diMe-Imd-BH3 (0.014 g, 0.125 mmol), and 

AIBN (0.020 g, 0.125 mmol).  Alcohol (4S,8R,12S)-79  was obtained in 0.0052 g, 64% yield: 

[ ] 
   =  1.5 (c = 0.38, CHCl3); 1H NMR (CDCl3, 700 MHz, ppm) = 3.635 (t, J = 6.6 Hz, 2H), 

1.664‒1.504 (m, 2H), 1.443‒1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.872 (d, J = 6.6 Hz, 3H), 

0.842 (d, J = 6.6 Hz, 3H), 0.839 (d, J = 6.6 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 
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63.51, 37.40, 37.35, 37.28, 37.15, 32.99, 32.91, 32.76, 32.63, 32.44, 31.94, 30.36, 30.00, 29.71, 

29.41, 27.11, 25.32, 25.17, 24.47, 24.43, 22.71, 19.70, 19.66, 19.61, 14.14; FTIR vmax 3349, 

2959, 2925, 2855 cm-1; HRMS calcd for C22H45O1: 325.3470, found 325.3442.  

 

 (4R,8S,12S)-4,8,12-Trimethylnonadecan-1-ol [(4R,8S, 12S)-79]: This deoxygenation reaction 

was performed according to General Procedure 5 using triphenylthionocarbonate 

(4S,5R,8R,9S,12R,13S)-78 (0.018 g, 0.022 mmol), diMe-Imd-BH3 (0.012 g, 0.110 mmol), and 

AIBN (0.018 g, 0.110 mmol). Alcohol (4R,8S,12S)-79  was obtained in 0.0047 mg, 65.5% yield:  

[ ] 
   =  2.0 (c = 0.29, CHCl3); 1H NMR (CDCl3, 700 MHz, ppm) = 3.635 (t, J = 6.6 Hz, 2H), 

1.664‒1.504 (m, 2H), 1.443‒1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.872 (d, J = 6.6 Hz, 3H), 

0.842 (d, J = 6.6 Hz, 3H), 0.840 (d, J = 6.6 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 

63.51, 37.49, 37.43, 37.38, 37.33, 37.16, 37.06, 32.99, 32.90, 32.78, 32.63, 31.94, 30.37, 30.36, 

30.00, 29.71, 29.42, 27.10, 25.18, 24.48, 24.43, 22.71, 19.77, 19.73, 19.61, 14.15; FTIR vmax 

3333, 2958, 2925, 2854 cm-1; HRMS calcd for C22H45O: 325.3470, found 325.3444.  

 

 

 (4R,8R,12S)-4,8,12-Trimethylnonadecan-1-ol [(4R,8R, 12S)-79]: This deoxygenation reaction 

was performed according to General Procedure 5 using triphenylthionocarbonate 

(4S,5R,8S,9R,12R,13S)-78 (0.017 g, 0.020 mmol), dime-Imd-BH3 (0.011 g, 0.100 mmol), and 

AIBN (0.017 g, 0.100 mmol).  Alcohol (4R,8R,12S)-79  was obtained in 0.0042 mg, 63.3% 

yield: [ ]    =  ‒2.4 (c = 0.2, CHCl3); 1H NMR (CDCl3, 700 MHz, ppm) = 3.634 (t, J = 6.6 Hz, 

2H), 1.664‒1.504 (m, 2H), 1.443‒1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.874 (d, J = 6.6 Hz, 
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3H), 0.842 (d, J = 6.6 Hz, 3H), 0.839 (d, J = 6.6 Hz, 3H); 13C NMR (CDCl3, 100 MHz, ppm) = 

63.50, 37.47, 37.43, 37.38, 37.33, 37.16, 33.00, 32.91, 32.78, 32.76, 32.66, 31.93, 30.37, 30.00, 

29.41, 27.11, 25.18, 24.46, 24.45, 23.46, 22.70, 19.73, 19.70, 19.67, 14.13; FTIR vmax 3334, 

2958, 2925, 2855 cm-1; HRMS calcd for C22H45O: 325.3470, found 325.3449.  
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APPENDIX A 

HYDROFORMYLATION APPARATUS 

Figure A.1. The initial hydroformylation setup 

 

Figure A.2. Parr EA3911 Hydrogenator 
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Figure A.3. Parr© general purpose pressure reactor 
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APPENDIX B 

FLUOROUS HPLC TRACE  

Figure B.1. F-HPLC trace of substrates 53, 60, 61, 62, 63, and 64 on a PFP columna,b 

 

a. conditions: isocratic 75:25 acetonitrile/H2O, 1 mL/min 

 

b. conditions: isocratic 65:35 acetonitrile/H2O, 1 mL/min 
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Figure B.2. F-HPLC trace of M-71 on a PFP column 

 

conditions: isocratic 65:35 acetonitrile/H2O, 1 mL/min 

 

Figure B.3. F-HPLC trace of M-78 on a reverse phase RP-C18 column 

 

conditions: isocratic 80:20 acetonitrile/H2O, 1 mL/min 
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APPENDIX C 

1D TOCSY OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL 

Figure C.1. 1D TOCSY of (4S,8R,12S)-79 
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Figure C.2. 1D TOCSY of (4R,8S,12S)-79 

 

Figure C.3. 1D TOCSY of (4R,8R,12S)-79 
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APPENDIX D 

2D INVERSE HMQC OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL 

 

Figure D.1. Inverse 2D HMQC experiment of (4S,8R,12S)-79 
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Figure D.2. Inverse 2D HMQC experiment of (4R,8S,12S)-79 

  

Figure D.3. Inverse 2D HMQC experiment of (4R,8R,12S)-79 
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APPENDIX E 

1H, 13C, AND 19F NMR SPECTRA 

The 1H NMR spectra were recorded on a Bruker Advance III 700 MHz; the 13C NMR spectra 

were recorded on a Bruker Advance III 600 MHz; and the 19F NMR spectra were recorded on a 

Bruker Advance III 400 MHz. 
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