50 research outputs found

    The Eye of History

    Get PDF
    Review Article on Yongtao Du and Jeff Kyong-McClain (eds.), Chinese History in Geographical Perspectiv

    What makes re-finding information difficult? A study of email re-finding

    Get PDF
    Re-nding information that has been seen or accessed before is a task which can be relatively straight-forward, but often it can be extremely challenging, time-consuming and frustrating. Little is known, however, about what makes one re-finding task harder or easier than another. We performed a user study to learn about the contextual factors that influence users' perception of task diculty in the context of re-finding email messages. 21 participants were issued re-nding tasks to perform on their own personal collections. The participants' responses to questions about the tasks combined with demographic data and collection statistics for the experimental population provide a rich basis to investigate the variables that can influence the perception of diculty. A logistic regression model was developed to examine the relationships be- tween variables and determine whether any factors were associated with perceived task diculty. The model reveals strong relationships between diculty and the time lapsed since a message was read, remembering when the sought-after email was sent, remembering other recipients of the email, the experience of the user and the user's ling strategy. We discuss what these findings mean for the design of re-nding interfaces and future re-finding research

    The Electric Dipole Moment of the Nucleons in Holographic QCD

    Full text link
    We introduce the strong CP-violation in the framework of AdS/QCD model and calculate the electric dipole moments of nucleons as well as the CP-violating pion-nucleon coupling. Our holographic estimate of the electric dipole moments gives for the neutron d_n=1.08 X 10^{-16} theta (e cm), which is comparable with previous estimates. We also predict that the electric dipole moment of the proton should be precisely the minus of the neutron electric dipole moment, thus leading to a new sum rule on the electric dipole moments of baryons.Comment: 22 pages, no figures. v2: A reference and an acknowledgment added. v3: One more reference, to appear in JHE

    Dynamics of Baryons from String Theory and Vector Dominance

    Get PDF
    We consider a holographic model of QCD from string theory, a la Sakai and Sugimoto, and study baryons. In this model, mesons are collectively realized as a five-dimensional \U(NF)=U(1)×SU(NF)U(N_F)=U(1)\times SU(N_F) Yang-Mills field and baryons are classically identified as SU(NF)SU(N_F) solitons with a unit Pontryagin number and NcN_c electric charges. The soliton is shown to be very small in the large 't Hooft coupling limit, allowing us to introduce an effective field B{\cal B}. Its coupling to the mesons are dictated by the soliton structure, and consists of a direct magnetic coupling to the SU(NF)SU(N_F) field strength as well as a minimal coupling to the U(NF)U(N_F) gauge field. Upon the dimensional reduction, this effective action reproduces all interaction terms between nucleons and an infinite tower of mesons in a manner consistent with the large NcN_c expansion. We further find that all electromagnetic interactions, as inferred from the same effective action via a holographic prescription, are mediated by an infinite tower of vector mesons, rendering the baryon electromagnetic form factors completely vector-dominated as well. We estimate nucleon-meson couplings and also the anomalous magnetic moments, which compare well with nature.Comment: 65pages, 3 figures, vector mesons and axial-vector mesons are now canonically normalized (comparisons with data and conclusions unaffected

    Compact-2D FDTD for Waveguides Including Materials with Negative Dielectric Permittivity, Magnetic Permeability and Refractive Index

    Get PDF
    An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A 3-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method

    Editorial to “Disturbances of cardiac wavelength and repolarization precede torsade de pointes and ventricular fibrillation in langendorff perfused rabbit hearts” by Luc Hondeghem ∗: It is difficult to make predictions, especially about the future∗: Thoughts about forecasting cardiotoxicity of pharmacological interventions

    No full text
    The evolution of drug resistance is a recurrent problem that has plagued efforts to treat and control malaria. Recent emergence of artemisinin resistance in Southeast Asia underscores the need to develop novel antimalarials and identify new targetable pathways in Plasmodium parasites. Transmission-blocking approaches, which typically target gametocytes in the host bloodstream or parasite stages in the mosquito gut, are recognized collectively as a strategy that when used in combination with antimalarials that target erythrocytic stages will not only cure malaria but will also prevent subsequent transmission. We tested four derivatives of (+)-usnic acid, a metabolite isolated from lichens, for transmission-blocking activity against Plasmodium falciparum using the standard membrane feeding assay. For two of the derivatives, BT37 and BT122, we observed a consistent dose-response relationship between concentration in the blood meal and oocyst intensity in the midgut. To explore their mechanism of action, we used the murine model Plasmodium berghei and found that both derivatives prevent ookinete maturation. Using fluorescence microscopy, we demonstrated that in the presence of each compound zygote vitality was severely affected, and those that did survive failed to elongate and mature into ookinetes. The observed phenotypes were similar to those described for mutants of specific kinases (NEK2/NEK4) and of inner membrane complex 1 (IMC1) proteins, which are all vital to the zygote-to-ookinete transition. We discuss the implications of our findings and our high-throughput screening approach to identifying next generation, transmission-blocking antimalarials based on the scaffolds of these (+)-usnic acid derivatives

    Chemical probe platforms identify targetable molecules and pathways that are involved in Plasmodium gametocyte-to-ookinete transition in the mosquito

    No full text
    Malaria parasite transmission cycles require an obligatory developmental stage in the Anopheles mosquito vector. In the era of global malaria elimination and eradication, there is emergent emphasis on the development of interventions that break the transmission cycle. While there are several existing antimalarials that have been shown to be effective in blocking the parasite\u2019s jump from humans to mosquitoes, to prevent parasite breakthrough resulting from overlapping resistance mechanisms, new pathways that can be targeted by small molecules (and eventually drugs) need to be identified. We used four natural product compounds, two usnic acid derivatives as well as parthenin and parthenolide as chemical probes to explore and identify drug-susceptible pathways during gametocyte-to-ookinete transition. We measured efficacy by a battery of quantitative, functional approaches including high-content fluorescence image capture, imaging flow cytometry and standard membrane feeding assay (SMFA). Two usnic acid (UA) derivatives, BT-122 and BT-37 were extremely potent in blocking P. falciparum and P. berghei zygote-to-ookinete maturation in vivo and in vitro. We further modified BT-37 with a UV-crosslinking probe and identified its putative targets in zygotes by mass spectrometry. We also observed that parthenin appeared to be more effective in blocking gamete-to-zygote formation than parthenolide; although the latter compound has a more promising pharmacological profile based on Phase I clinical trials. Importantly, we noted that exposure of day 15 stage V gametocytes to parthenin (1 \ub5g/ml) for 24 hours, followed by drug wash out and incubation in parthenin-free culture medium for another 24 hours resulted in the complete blockade of mosquito infection as measured by SMFA. Chemical derivitizations of parthenin are being explored to develop a new crosslinking probe to permit subsequent identification of its candidate target molecules in Plasmodium stage V gametocytes. We envision that these studies will illuminate the potential mechanism of action that results in the inactivation of this important transmission stage
    corecore