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An efficient compact-2D finite-difference time-domain method is presented for the numerical 

analysis of guided modes in waveguides that may include negative dielectric permittivity, 

negative magnetic permeability and negative refractive index materials. Both complex variable 

and real variable methods are given. The method is demonstrated for the analysis of channel-

plasmon-polariton guided modes in triangular groves on a metal surface. The presented method 

can be used for a range of waveguide problems that were previously unsolvable analytically, 

due to complex geometries, or numerically, due to computational requirements of conventional 

three-dimensional finite-difference time-domain methods. A 3-dimensional finite-difference 

time-domain algorithm that also allows analysis in the presence of bound or free electric and 

equivalent magnetic charges is presented and an example negative refraction demonstrates the 

method. 
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1. Introduction 

One of the most powerful methods for the analysis of electromagnetic problems is 

the numerical solution of Maxwell’s equations by the finite-difference time-domain 

(FDTD) method [1, 2]. However, the computational resources required prohibits the 

analysis of many structures, particularly if they require three-dimensional (3D) analysis. 

At the same time, conventional FDTD [1] can not be used for modeling materials that 

exhibit negative dielectric permittivity (metals below the plasma frequency or 

conventional dielectric at a frequency near a material resonance, etc.), magnetic 

permeability (magnetic materials) at the frequency (frequencies) of consideration [3, 4]. 

This is because of positive feedback in the time-domain algorithm when attempting to 

model frequency-domain parameters resulting in unphysical rapid increase of the fields 

in the computation window, i.e. numerical instability. Naturally this includes materials 

with negative refractive index (simultaneous negative dielectric permittivity and 

magnetic permeability) that were theoretically proposed almost 40 years ago [5] but 

have been receiving a lot of attention in recent years since they were experimentally 

verified in the microwave regime [6] (though different metamaterials or photonics 

crystals may allow observation of negative refraction at higher frequencies (e.g. near-

infrared and optical frequencies [7]). In recent years, conventional FDTD was extended 

for the analysis of dielectrics at a frequency near an electronic resonance (where the 

dielectric permittivity can be negative) using a bound electron model and also for also 

for metals using a free electron model (or bound electron model when operating above 

the plasma frequency) [3, 4]. Later the conventional FDTD method was extended to 

allow for materials that exhibit negative refractive index materials [8]. 
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It has been shown that the computational requirements for the analysis of guided 

modes in dielectric structures can be drastically reduced by assuming translational 

symmetry of the structure along the direction of propagation. In this case the field 

components have a known dependence of the form, exp(ikz), along this axis (where k is 

the wave number of the guided mode). This method was named compact-2D FDTD [9-

11] and was previously used for analysis of guided modes in conventional anisotropic 

dielectric waveguides [9] as well as photonic crystal fibres [11].  

At the same time, miniaturization of optical dielectric waveguides is currently a 

major problem that impedes the development of nano-sized integrated optical circuits 

and other nano-optical applications. The main reason for this problem is the diffraction 

limit of light that does not allow localization of electromagnetic waves in regions 

noticeably smaller than half the effective wavelength in the structure [12-14]. One of the 

main directions to overcome this diffraction limit and achieving sub-diffraction limit 

localization is related to guided modes of surface plasma waves (plasmons) in metallic 

(negative dielectric permittivity) nano-sized structures. These include metallic nano-

strips [15-18], nano-rods [14, 19], nano-chains [12, 13, 20, 21], gap-plasmons [22-25], 

channel plasmon-polaritons (CPPs) [26-30], etc. 

Therefore we present a compact-2D method that allows for negative cases of the 

dielectric permittivity (and magnetic permeability) by implementing the Drude model of 

the electric (and equivalent magnetic) charges in the compact-2D FDTD algorithm. 

While 3D FDTD methods have limitations on the waveguide geometries that can be 

analyzed, because of extensive computational resources required, the presented 

compact-2D FDTD method essentially removes this limitation allowing analysis of 

practically any waveguide shape and any materials including those exhibiting positive 
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dielectric permittivity, negative dielectric permittivity, negative magnetic permeability 

and negative refractive index. Also, we present the derivation of the FDTD algorithm 

given in [3, 4] extended to 3D and also allowing for negative magnetic permeability ([3, 

4] gave only the 2D description and only allowing for negative dielectric permittivity). 

 

2. 3D FORMULATION WITH ELECTRIC AND EQUIVALENT MAGNETIC 

CHARGES 

We model the motion of electronic charges using the kinetic force equation as 

was done in [3, 4] and we extend to three dimensions and introduce equivalent magnetic 

charges (in addition to the electric charges). The current densities are introduced into the 

Maxwell equations as follows: 
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where ε and µ are the dielectric permittivity and magnetic permeability, that are 

assumed to be positive, while the response of the material due to charges is modeled in 

the electric and magnetic current densities, Je and Jm. I.e. charges are moving in the 
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material that has positive ε and µ (e.g. charges in vacuum for the case for metals). 

Discretizing space and time by substituting the derivatives in equations (3) with central 

differences (that are second-order accurate [1]) using the Yee scheme [1, 2] illustrated 

in Fig. 1 we obtain 
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where the p, q, r and n indices represent discrete coordinates in the x, y, z and t axes 

respectively. The motion of the charges that give rise to the current densities Je and Jm 

in equations (4) are determined using either a local bound electron or local Drude model 

as follows.  The net force, Fnet, on a charge is taken as 

 restoringdampingfieldnetnet m FFFaF ++==     (5) 

where Ffield is force on a charge due to the presence of a field (electric field for electrons 

or magnetic field for equivalent magnetic charges), Fdamping is the force that results in 

kinetic energy loss due to collisions (i.e. dissipation) and Frestoring is the restoring force 

on the charge due to any binding to a positively charged region (e.g. positive atomic 
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core for the electron). Ffield = qG, where q is the charge (electronic, or equivalent 

magnetic charge) and G is either the electric field, E, for the case of electrons, or the 

magnetic field, H, for equivalent magnetic charges. Fdamping = -mωdv = -mωddr/dt, 

where m, ωd, v and r are the charge mass, damping frequency, velocity and 

displacement respectively. Frestoring = -kr = -mωr
2r, where k is the effective spring 

constant on the charge related to its binding to a positively charged core. Therefore 

equation (5) can be written as 
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The acceleration ∂v/∂t is approximated by the finite difference, 
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where it should be noted that time indices (superscript of v and G) are given for the case 

of electrons in the electric field, but for the equivalent magnetic charges in the magnetic 

field the indices are displaced by ½ (according to the staggering in time of the 

calculation of the magnetic field [1]). Various approximations of equation (10) can be 

made when the damping or restoring forces on the electric or magnetic charges are 

negligible. For example, in a dielectric at a frequency near an electronic resonance with 

negligible damping (ωd ≈ 0), it is possible to describe the electron motion by 
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Alternatively, for a metal below the plasma frequency we can disregard the binding 

force on the electrons (ωr ≈ 0) and the positive atomic cores giving, 
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where ρe and ρm are the electron and magnetic charge densities respectively and ve,x,y,z 

and vm,x,y,z are respectively the velocity of electrons and magnetic charges as determined 

by equation (10) (or a further approximation of equation (10), e.g. equations (11)-(13)). 
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As a numerical example we give a demonstration of refraction at an interface between 

two materials, one that has positive dielectric permittivity and permeability (positive 

refractive index) and one that has negative dielectric permittivity and magnetic 

permeability (negative refractive index). In this case we can reduce the 3D FDTD 

equations to the 2D case (we assumed that the field is homogenous along the z-axis). 

Fig. 2 shows the electric field distribution, |E|, some time after the incident wave in the 

material with positive refractive index reaches (from the right hand side) the interface at 

x = 250 (cells). In the time-domain results the phase fronts of the beam in the negative 

refractive index material were observed to be moving in the opposite direction to the 

direction of energy flow into the material (as indicated by directions of the wavevector 

k and Poynting vector P (Fig. 2)). The negative angles of refraction in the material with 

negative refractive index, θ2, are the same (within the uncertainty of the numerical 

results) as determined from Snell's law, n1sinθ1 = n2sinθ2 taking n1 and θ1 as positive 

and n2 as negative. Also, the decreased wavelength in the negative refractive index 

material with n2 > n1 (Fig. 2b, x < 250) is given by λ2 = λvac/|n2|. These results are in 

agreement with previous results for negative refractive index materials [5, 6, 8, 31]. 

 

3. COMPACT-2D FORMULATION WITH ELECTRIC AND MAGNETIC 

CHARGES 

Here we extend the compact-2D formulation derived previously for dielectric 

waveguide structures with positive dielectric permittivity [9-11] to enable simulation 

with materials that can also possess negative dielectric permittivity, negative magnetic 

permeability or any combinations of such materials (i.e. negative refractive index 

materials). We assume translational symmetry of the structure along the direction of 
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propagation (z axis) and that the wave number of the guided mode is given by k. 

Therefore every field component of the guided mode has the form G(x,y,z) = 

G(x,y)exp(ikz) (where here, i = (-1)1/2). In this case if we calculate the field components 

at one z-coordinate, we automatically know them everywhere and further, we do not 

need to numerically approximate the derivatives of the fields with respect to the z axis 

since we can get them analytically given the assumed form of the fields, i.e. the 3D 

guided-mode problem is reduced to a 2D problem. Fig. 3 gives the 2D grid which is 

equivalent to the 3D grid in Fig. 1 but compressed in the z axis (i.e. we take the limit ∆z 

→0). Taking the Maxwell equations (1) and (2) and repeating the derivation in a similar 

fashion to section 2 but using the assumed form of the field gives 
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(15) 

where Je and Jm are given by 
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where v are given by equation (10) or the further approximations (equations (11)-(13)). 

The stability condition for the size of the time step ∆t in the compact-2D FDTD scheme 

was obtained previously [10] as  
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where v is the speed of light in the considered materials (not in a vacuum as reported in 

[11]). Eq. (15) introduces complex numbers that pose no problem other than increased 

computation time. It is possible to get rid of the complex numbers by assuming instead 

of G(x,y,z) = G(x,y)exp(ikz), that Ez, Hx, Hy, have cos(kz+φ) forms and Hz, Ex, Ey have 

sin(kz+φ)[11, 32] forms giving, instead of equations (15), 
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(18) 

 

As a demonstration, CPPs guided by a triangular metal groove[27-30] are considered. A 

CPP waveguide makes a good test example because of the rapidly changing fields (in 

space) and the presence of a sharp point in the structure making numerical simulation 

challenging (time consuming or impossible for some groove angles using the 3D FDTD 

method [27-30]).  The waveguide structure is presented in Fig. 4a. Artificial absorbing 

boundary conditions of the first-order Mur type are used at the edges of the computation 

window [33]. An initial field distribution is inserted into the computational window and 

the fields are iterated in the time domain. The initial field distribution should be pulsed 

in such a fashion as to include any desired frequencies of interest. After sufficient time 

iteration the non-physical fields vanish and only physical field components (steady state 

and time harmonic) linger, if any exist for the considered structure (at the assumed wave 

number, within the range of frequencies excited). In the presented calculations the time 

dependence of the incident pulse is given by 
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00
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nn nn

tnnEEE    (19) 

where ω0 is the central frequency of the pulse. In the present examples, λvac = 632.8nm, 

ndelay = 3τ, τ =2×10-15/∆t, ∆t = 0.95∆tmax (determined with equation (17), given ∆x,y = 

λvac/400 for the data presented below). The more similar the initial field distribution is 
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to that of the eigenmodes (if they exist) then the less number of time-itterations will be 

required to achieve the steady-state result. However, the initial field distribution need 

not be that similar to that of the desired guided mode if computation time is sacrificed 

slightly (due to an increased number of iterations required to reach the steady-state 

situation). Therefore the initial field distribution is not that critical since the presented 

method is highly efficient. For example, for the excitation of the CPP waveguide whose 

guided mode is expected to be strongly localized to the tip of the channel, it is sufficient 

to introduce the incident source at only the single grid cell at the tip of the groove (as 

was done for the data presented below). On the other hand, the polarization of the 

incident field is critical and the incident source should share at least one field 

component with that of the guided mode.  

  

Fig. 4b shows the resultant steady-state electric field distribution in the cross-section of 

waveguide and we can see a highly localized plasmon guided mode at the apex of the 

groove that is exponentially decaying in the both the y and x directions from the apex 

but propagating in the z direction. The field distribution is in good agreement with that 

obtained in from the 3D method [27-30]. To obtain this result using the compact-2D 

method requires 2 hours of computation time using a 2Ghz CPU compared to about 2 

days for the 3D method (and can not even be calculated using a conventional PC with 

the similarly small grid cell size (and hence accuracy)). In addition, while calculating 

the same cross-sectional area of the waveguide with the same grid spacing the compact-

2D method requires about ztotal/∆z times less memory than the 3D method, where ztotal is 

the length of the computation window in the direction of propagation. E.g. if a ztotal ~ 

5λvac is required to achieve the steady state guided mode free of interference from the 
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incident beam, etc., then taking ∆z = λvac/50 (which is likely to be insufficient for many 

structures) we will use about 250 times more memory using the 3D method than in the 

compact-2D method. Hence the compact-2D method will be immediately applicable to 

a much wider range of structures than the 3D method. 

 

When we introduce the field into the waveguide, we automatically generate all modes 

(that are resolved with the used grid resolution and in the range of frequencies contained 

in the incident pulse) that have the assumed propagation constant, k. Therefore, in the 

structure that supports multiple modes at the given propagation constant, the field in the 

waveguide will experience beats in time due to the interference of the co-propagating 

modes that oscillate with different frequency. This interference is evident in Fig. 5a that 

shows the typical time dependence of the field at the tip of the CPP waveguide. In Fig. 

5a we can also see the shape and duration of the incident pulse (n < ~2000) and that a 

steady-state has clearly been achieved. 

 

The time-domain field at the tip of the groove (Fig. 5a, n > 2000 (to avoid the incident 

pulse)) is converted to the frequency domain by expanding the field into the Fourier 

integral and the Fourier amplitudes are expressed as a function of wavelength in a 

vacuum (or equivalently, frequency) – see Fig. 5b. The maxima correspond to 

frequencies at which the guided modes exist in the structure with the assumed 

propagation constant, k = 1.7×107 m-1 (the righter-most peak corresponds the 

fundamental mode). It should be noted that using either the complex (equations (15)) or 

real (equations (18)) did not give any change in eigen-frequencies for the considered 

structure. 
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4. CONCLUSIONS 

A 3D description of the FDTD algorithm for bound and free, electronic and equivalent 

magnetic charges was given and an example of negative refraction illustrated the 

method. We presented a highly efficient compact-2D FDTD method for the analysis of 

waveguides that may include metallic, magnetic or negative refractive index materials. 

The method was demonstrated for the analysis of CPP guided modes in triangular 

grooves on a metal surface. Both a complex variable and real variable scheme were 

presented though no difference in the calculated eigen-frequencies was observed for the 

considered structure, although the real variable method was significantly faster (about 

1/5). Computation time and memory compared to the three-dimensional calculations are 

drastically reduced, >100 times for typical problems. The computational savings, 

especially in terms of required memory, means that the presented method is applicable 

to the accurate analysis of range of waveguide structures that can not be considered 

using 3D-FDTD (or analytical methods).  
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Figures 

 

Fig. 1. 3D Yee unit cell showing the location at which each field component and current 

density is determined. 

 

 

 

Fig. 2. The electric field of an incident beam undergoing negative refraction. The EM 

wave is incident from the right (in a vacuum, i.e. n1 = 1). (a) Negative refraction for the 

case of |n2| = |n1| = 1. (b) Negative refraction for the case of |n2| > |n1|. 
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Fig. 3. Compact-2D unit cell showing the location at which each field component is 

determined. The grid is obtained by taking the 3D grid (Fig. 1) in the limit ∆z → 0. 

 

 

Fig. 4. (a) The structure with a triangular groove in a metal substrate. (b) Distribution of 

the magnitude of the electric field in the vacuum groove (ε = 1) in silver with free 

charge density ρe = -7.684×109 C/m-3 (ρm = 0) and damping frequency fd = 0 (giving εm 

= -16.22) after 20000 time iterations. Groove angle is θ = 30° and k = 1.2×107 m-1. 
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Fig. 5 (a) Amplitude of Ex at tip of the groove versus time (t = n∆t = n×0.95∆tmax). The 

incident pulse can be seen in the region n < 2000. Groove angle θ = 10° and k = 1.7×107 

m-1. (b) Dependence of the Fourier amplitude of the field at the tip of the groove (Fig. 

5a, taking n > 2000) on the wavelength in a vacuum. 


