73 research outputs found

    Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands With Proteins in Drug Design

    Get PDF
    A comprehensive characterization of the thermodynamic and kinetic profiling of ligands binding to a given target protein is crucial for the hit selection as well as the hit-to-lead-to-drug evolution. Isothermal titration calorimetry (ITC), widely known as an invaluable tool to measure the thermodynamic data, has recently found its way to determine the binding kinetics too. The extensive application of ITC in measurement of both thermodynamic and kinetic data manifests unique roles of ITC in drug discovery and development. This mini-review concentrates on elaborating how to gain the thermodynamic and kinetic data using ITC, highlighting the importance of these data in lead discovery and optimization, and intends to provide an overview of the technical and conceptual advances that offer unprecedented access to protein–ligand recognition by ITC measurement

    Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor

    Get PDF
    The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level

    Free energy landscape for the binding process of Huperzine A to acetylcholinesterase

    Get PDF
    Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering betteror best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (ΔG≠ off). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated.We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/ mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect thismethodology to be widely applicable to drug discovery and development

    The genomic and bulked segregant analysis of \u3ci\u3eCurcuma alismatifolia\u3c/i\u3e revealed its diverse bract pigmentation

    Get PDF
    Compared with most flowers where the showy part comprises specialized leaves (petals) directly subtending the reproductive structures, most Zingiberaceae species produce showy ‘‘flowers’’ through modifications of leaves (bracts) subtending the true flowers throughout an inflorescence. Curcuma alismatifolia, belonging to the Zingiberaceae family, a plant species originating from Southeast Asia, has become increasingly popular in the flower market worldwide because of its varied and esthetically pleasing bracts produced in different cultivars. Here, we present the chromosome-scale genome assembly of C. alismatifolia ‘‘Chiang Mai Pink’’ and explore the underlying mechanisms of bract pigmentation. Comparative genomic analysis revealed C. alismatifolia contains a residual signal of wholegenome duplication. Duplicated genes, including pigment-related genes, exhibit functional and structural differentiation resulting in diverse bract colors among C. alismatifolia cultivars. In addition, we identified the key genes that produce different colored bracts in C. alismatifolia, such as F3\u275’H, DFR, ANS and several transcription factors for anthocyanin synthesis, as well as chlH and CAO in the chlorophyll synthesis pathway by conducting transcriptomic analysis, bulked segregant analysis using both DNA and RNA data, and population genomic analysis. This work provides data for understanding the mechanism of bract pigmentation and will accelerate breeding in developing novel cultivars with richly colored bracts in C. alismatifolia and related species. It is also important to understand the variation in the evolution of the Zingiberaceae family

    Repurposing of Rutan showed effective treatment for COVID-19 disease

    Get PDF
    Previously, from the tannic sumac plant (Rhus coriaria), we developed the Rutan 25 mg oral drug tablets with antiviral activity against influenza A and B viruses, adenoviruses, paramyxoviruses, herpes virus, and cytomegalovirus. Here, our re-purposing study demonstrated that Rutan at 25, 50, and 100 mg/kg provided a very effective and safe treatment for COVID-19 infection, simultaneously inhibiting two vital enzyme systems of the SARS-CoV-2 virus: 3C-like proteinase (3CLpro) and RNA-dependent RNA polymerase (RdRp). There was no drug accumulation in experimental animals’ organs and tissues. A clinical study demonstrated a statistically significant decrease in the C-reactive protein and a reduction of the viremia period. In patients receiving Rutan 25 mg (children) and 100 mg (adults), the frequency of post-COVID-19 manifestations was significantly less than in the control groups not treated with Rutan tablets. Rutan, having antiviral activity, can provide safe treatment and prevention of COVID-19 in adults and children.Clinical Trial RegistrationClinicalTrials.gov, ID NCT05862883

    Recent Trends and Applications of Molecular Modeling in GPCR–Ligand Recognition and Structure-Based Drug Design

    No full text
    G protein-coupled receptors represent the largest family of human membrane proteins and are modulated by a variety of drugs and endogenous ligands. Molecular modeling techniques, especially enhanced sampling methods, have provided significant insight into the mechanism of GPCR–ligand recognition. Notably, the crucial role of the membrane in the ligand-receptor association process has earned much attention. Additionally, docking, together with more accurate free energy calculation methods, is playing an important role in the design of novel compounds targeting GPCRs. Here, we summarize the recent progress in the computational studies focusing on the above issues. In the future, with continuous improvement in both computational hardware and algorithms, molecular modeling would serve as an indispensable tool in a wider scope of the research concerning GPCR–ligand recognition as well as drug design targeting GPCRs

    Drug discovery and development targeting the life cycle of SARS-CoV-2

    No full text
    A newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the β-coronavirus family and shows high similarities with SARS-CoV. On March 11, 2020, the World Health Organization (WHO) declared SARS-CoV-2 a global pandemic, and the disease was named the coronavirus disease 2019 (COVID-19). The ongoing COVID-19 pandemic has caused over 46 million infections and over one million deaths worldwide, and the numbers are still increasing. Efficacious antiviral agents are urgently needed to combat this virus. The life cycle of SARS-CoV-2 mainly includes the viral attachment, membrane fusion, genomic replication, assembly and budding of virions. Accordingly, drug development against SARS-CoV-2 currently focuses on blocking spike protein binding to ACE2, inhibiting viral membrane fusion with host cells, and preventing the viral replication by targeting 3C-like protease, papain-like protease, RNA-dependent RNA polymerase as well as some host-cell proteins. In this review, the advances of drug development in these three major areas are elaborated
    corecore