9 research outputs found
Phenotypic and genetic analysis of the Triticum monococcum-Mycosphaerella graminicola interaction
Here, the aim was to understand the cellular and genetic basis of the Triticum monococcum–Mycosphaerella graminicola interaction.
Testing for 5 yr under UK field conditions revealed that all 24 T. monococcum accessions exposed to a high level of natural inocula were fully resistant to M. graminicola. When the accessions were individually inoculated in the glasshouse using an attached leaf seeding assay and nine previously characterized M. graminicola isolates, fungal sporulation was observed in only three of the 216 interactions examined. Microscopic analyses revealed that M. graminicola infection was arrested at four different stages post‐stomatal entry. When the inoculated leaves were detached 30 d post inoculation and incubated at 100% humidity, abundant asexual sporulation occurred within 5 d in a further 61 interactions.
An F2 mapping population generated from a cross between T. monococcum accession MDR002 (susceptible) and MDR043 (resistant) was inoculated with the M. graminicola isolate IPO323. Both resistance and in planta fungal growth were found to be controlled by a single genetic locus designated as TmStb1 which was linked to the microsatellite locus Xbarc174 on chromosome 7Am.
Exploitation of T. monococcum may provide new sources of resistance to septoria tritici blotch disease
New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs