66 research outputs found

    A quantum system control method based on enhanced reinforcement learning

    Full text link
    Traditional quantum system control methods often face different constraints, and are easy to cause both leakage and stochastic control errors under the condition of limited resources. Reinforcement learning has been proved as an efficient way to complete the quantum system control task. To learn a satisfactory control strategy under the condition of limited resources, a quantum system control method based on enhanced reinforcement learning (QSC-ERL) is proposed. The states and actions in reinforcement learning are mapped to quantum states and control operations in quantum systems. By using new enhanced neural networks, reinforcement learning can quickly achieve the maximization of long-term cumulative rewards, and a quantum state can be evolved accurately from an initial state to a target state. According to the number of candidate unitary operations, the three-switch control is used for simulation experiments. Compared with other methods, the QSC-ERL achieves close to 1 fidelity learning control of quantum systems, and takes fewer episodes to quantum state evolution under the condition of limited resources.Comment: 10 pages, 3 figure

    Cell-free Circulating miRNA Biomarkers in Cancer.

    Get PDF
    Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice

    Archean geodynamics : Ephemeral supercontinents or long-lived supercratons

    Get PDF
    Many Archean cratons exhibit Paleoproterozoic rifted margins, implying they were pieces of some ancestral landmass(es). The idea that such an ancient continental assembly represents an Archean supercontinent has been proposed but remains to be justified. Starkly contrasting geological records between different clans of cratons have inspired an alternative hypothesis where cratons were clustered in multiple, separate "supercratons." A new ca. 2.62 Ga paleomagnetic pole from the Yilgarn craton of Australia is compatible with either two successive but ephemeral supercontinents or two long-lived supercratons across the Archean-Proterozoic transition. Neither interpretation supports the existence of a single, long-lived supercontinent, suggesting that Archean geodynamics were fundamentally different from subsequent times (Proterozoic to present), which were influenced largely by supercontinent cycles.Peer reviewe

    The 1.24–1.21 Ga Licheng large igneous province in the North China Craton: Implications for paleogeographic reconstruction

    Get PDF
    Detailed geochronological, geochemical, and paleomagnetic studies of mafic dyke swarms, often associated with mantle plumes, can provide unique constraints on paleogeographic reconstructions. Mafic dykes with baddeleyite U-Pb ages of 1,233 27 Ma (SIMS), 1,206.7 1.7 Ma (TIMS), 1,214.0 4.9 Ma (TIMS), and 1,236.3 5.4 Ma (TIMS) have been identified in the eastern North China Craton. Geochemical data indicate subalkaline to alkaline basalt compositions with OIB-like trace element signatures and an intraplate tectonic setting. In addition to these geochemical signatures, the radiating geometry of these dykes also suggests a 1.24-1.21 Ga large igneous province caused by a mantle plume event. A new similar to 1.24 Ga paleomagnetic pole at 2.0 degrees N, 165.1 degrees E, A(95) = 11.0 degrees, N = 9 and an similar to 1.21 Ga VGP at -23.0 degrees N, 92.5 degrees E, dp/dm = 4.7 degrees/7.8 degrees have been obtained from these dykes, with the 1.24 Ga pole supported by positive baked contact test. Our paleomagnetic analyses suggest that the North China Craton and the proto-Australian continent could have been separated by 1.24-1.21 Ga from an established Nuna connection at ca. 1.32 Ga. By comparison with Laurentia paleopoles, we present the paleogeography of dispersing North China, proto-Australian, and Laurentia cratons in the late Mesoproterozoic during the breakup of the supercontinent Nuna.Peer reviewe

    implications for health and disease

    Get PDF
    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease

    One-Step Synergistic Treatment Approach for High Performance Amorphous InGaZnO Thin-Film Transistors Fabricated at Room Temperature

    No full text
    Amorphous InGaZnO (a-InGaZnO) is currently the most prominent oxide semiconductor complement to low-temperature polysilicon for thin-film transistor (TFT) applications in next-generation displays. However, balancing the transmission performance and low-temperature deposition is the primary obstacle in the application of a-InGaZnO TFTs in the field of ultra-high resolution optoelectronic display. Here, we report that a-InGaZnO:O TFT prepared at room temperature has high transport performance, manipulating oxygen vacancy (VO) defects through an oxygen-doped a-InGaZnO framework. The main electrical properties of a-InGaZnO:O TFTs included high field-effect mobility (µFE) of 28 cm2/V s, a threshold voltage (Vth) of 0.9 V, a subthreshold swing (SS) of 0.9 V/dec, and a current switching ratio (Ion/Ioff) of 107; significant improvements over a-InGaZnO TFTs without oxygen plasma. A possible reason for this is that appropriate oxygen plasma treatment and room temperature preparation technology jointly play a role in improving the electrical performance of a-InGaZnO TFTs, which could not only increase carrier concentration, but also reduce the channel-layer surface defects and interface trap density of a-InGaZnO TFTs. These provides a powerful way to synergistically boost the transport performance of oxide TFTs fabricated at room temperature

    Cost of organic waste technologies: A case study for New Jersey

    No full text
    This paper evaluates the benefits of converting food waste and manure to biogas and/or fertilizer, while focusing on four available waste treatment technologies: direct combustion, landfilling, composting, and anaerobic digestion. These four alternative technologies were simulated using municipal-level data on food waste and manure in New Jersey. The criteria used to assess the four technologies include technological productivity, economic benefits, and impact on land scarcity. Anaerobic digestion with gas collection has the highest technological productivity; using anaerobic digesters would supply electricity to nearly ten thousand families in New Jersey. In terms of economic benefits, the landfill to gas method is the least costly method of treating waste. In comparison, direct combustion is by far the most costly method of all four waste-to-energy technologies
    • …
    corecore