24 research outputs found

    Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure

    Get PDF
    The structure of local ecological communities is thought to be determined by a series of hierarchical abiotic and biotic filters which select for or against species based on their traits. Many human impacts, like fragmentation, serve to alter environmental conditions across a range of spatial scales and may impact trait–environment interactions. We examined the effects of environmental variation associated with habitat fragmentation of seagrass habitat measured from microhabitat to landscape scales in controlling the taxonomic and trait-based community structure of benthic fauna. We measured patterns in species abundance and biomass of seagrass epifauna and infauna sampled using sediment cores from 86 sites (across 21 meadows) in Back Sound, North Carolina, USA. We related local faunal community structure to environmental variation measured at three spatial scales (microhabitat, patch and landscape). Additionally, we tested the value of species traits in predicting species-specific responses to habitat fragmentation across scales. While univariate measures of faunal communities (i.e. total density, biomass and species richness) were positively related to microhabitat-scale seagrass biomass only, overall community structure was predicted by environmental variation at the microhabitat, patch (i.e. patch size) and landscape (i.e. number of patches, landscape seagrass area) scales. Furthermore, fourth-corner analysis revealed that species traits explained as much variation in organismal densities as species identity. For example, species with planktonic-dispersing larvae and deposit-feeding trophic modes were more abundant in contiguous, high seagrass cover landscapes while suspension feeders favoured more fragmented landscapes. We present quantitative evidence supporting hierarchal models of community assembly which predict that interactions between species traits and environmental variation across scales ultimately drive local community composition. Variable responses of individual traits to multiple environmental variables suggest that community assembly processes that act on species via traits related to dispersal, mobility and trophic mode will be altered under habitat fragmentation. Additionally, with increasing global temperatures, the tropical seagrass Halodule wrightii is predicted to replace the temperate Zostera marina as the dominate seagrass in our study region, therefore potentially favouring species with planktonic-dispersing larva and weakening the strength of environmental control on community assembly

    Comparing edge and fragmentation effects within seagrass communities: A meta-analysis

    Get PDF
    Examining community responses to habitat configuration across scales informs basic and applied models of ecosystem function. Responses to patch-scale edge effects (i.e., ecological differences between patch edges and interiors) are hypothesized to underpin the effects of landscape-scale fragmentation (i.e., mosaics of multipatch habitat and matrix). Conceptually, this appears justifiable because fragmented habitats typically have a greater proportion of edge than continuous habitats. To critically inspect whether patch-scale edge effects translate consistently (i.e., scale up) into patterns observed in fragmented landscapes, we conducted a meta-analysis on community relationships in seagrass ecosystems to synthesize evidence of edge and fragmentation effects on shoot density, faunal densities, and predation rates. We determined effect sizes by calculating log response ratios for responses within patch edges versus interiors to quantify edge effects, and fragmented versus continuous landscapes to quantify fragmentation effects. We found that both edge and fragmentation effects reduced seagrass shoot densities, although the effect of edge was statistically stronger. By contrast, fauna often exhibited higher densities in patch edges, while fragmentation responses varied directionally across taxa. Fish densities trended higher in patch edges and fragmented landscapes. Benthic fishes responded more positively than benthopelagic fishes to edge effects, although neither guild strongly responded to fragmentation. Invertebrate densities increased in patch edges and trended lower in fragmented landscapes; however, these were small effect sizes due to the offsetting responses of two dominant epifaunal guilds: decapods and smaller crustaceans. Edge and fragmentation affected predation similarly, with prey survival trending lower in patch edges and fragmented landscapes. Overall, several similarities suggested that edge effects conform with patterns of community dynamics in fragmented seagrass. However, across all metrics except fish densities, variability in fragmentation effects was twice that of edge effects. Variance patterns combined with generally stronger responses to edge than fragmentation, warrant caution in unilaterally “scaling-up” edge effects to describe fragmentation effects. Alternatively, fragmentation includes additional factors (e.g., matrix effects, patch number, mean patch size, isolation) that may enhance or offset edge effects. Fragmentation and increased edge are syndromes of habitat degradation, therefore this analysis informs mechanistic models of community change in altered terrestrial and marine systems

    Threshold effects of habitat fragmentation on fish diversity at landscapes scales

    Get PDF
    Habitat fragmentation involves habitat loss concomitant with changes in spatial configuration, confounding mechanistic drivers of biodiversity change associated with habitat disturbance. Studies attempting to isolate the effects of altered habitat configuration on associated communities have reported variable results. This variability may be explained in part by the fragmentation threshold hypothesis, which predicts that the effects of habitat configuration may only manifest at low levels of remnant habitat area. To separate the effects of habitat area and configuration on biodiversity, we surveyed fish communities in seagrass landscapes spanning a range of total seagrass area (2-74% cover within 16 000-m2 landscapes) and spatial configurations (1-75 discrete patches). We also measured variation in fine-scale seagrass variables, which are known to affect faunal community composition and may covary with landscape-scale features. We found that species richness decreased and the community structure shifted with increasing patch number within the landscape, but only when seagrass area was low (<25% cover). This pattern was driven by an absence of epibenthic species in low-seagrass-area, highly patchy landscapes. Additional tests corroborated that low movement rates among patches may underlie loss of vulnerable taxa. Fine-scale seagrass biomass was generally unimportant in predicting fish community composition. As such, we present empirical support for the fragmentation threshold hypothesis and we suggest that poor matrix quality and low dispersal ability for sensitive taxa in our system may explain why our results support the hypothesis, while previous empirical work has largely failed to match predictions

    Salt marsh shoreline geomorphology influences the success of restored oyster reefs and use by associated fauna

    Get PDF
    Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small-fetch, gradual-sloped shoreline), “ramp” (large-fetch, gradual-sloped shoreline), and “scarp” (large-fetch, steep-sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small-fetch, gradual-sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat-related functions (prey availability and refuge) already present along existing salt marsh borders

    Effects of habitat fragmentation on Zostera marina seed distribution

    Get PDF
    Habitat fragmentation is a process which can alter the spatial configuration and reduce the overall area of a habitat. This generally results in a degradation of habitat functioning. Fragmentation of seagrass (Zostera marina) beds has become increasingly common, and it may threaten the valuable ecosystem services they provide. Sexual reproduction through flowering and seed dispersal could contribute to the species' potential resiliency by reducing its vulnerability to fragmentation. We investigated whether the proportion and density of flowering Z. marina shoots, and subsequently the density and distribution of seeds, differed between fragmented and continuous beds. Our results revealed that while flowering effort did not differ between the two bed types, seed density was significantly reduced in fragmented versus continuous beds. Further, seed distributions were altered in fragmented beds when compared to continuous beds, both within and directly outside the bed's boundaries. Seagrass patch size positively influenced seed density, with lower seed densities in small patches. Fragmented beds consistently contained fewer seeds per-unit-area than continuous beds, regardless of bed seagrass area and flowering effort. Collectively, these results emphasize the vulnerability of Z. marina to habitat fragmentation by demonstrating a negative effect on seed density and an impact on seed distribution, which likely reduces the potential advantages of sexual reproduction for bed growth and resiliency to perturbations

    Tropical cyclone impacts on seagrass-associated fishes in a temperate-subtropical estuary

    Get PDF
    Major storms can alter coastal ecosystems in several direct and indirect ways including habitat destruction, stormwater-related water quality degradation, and organism mortality. From 2010–2020, ten tropical cyclones impacted coastal North Carolina, providing an opportunity to explore ecosystem responses across multiple storms. Using monthly trawl and contemporaneous seagrass surveys conducted in Back Sound, NC, we evaluated how cyclones may affect the nursery role of shallow-water biogenic habitats by examining seagrass-associated fish responses within a temperate-subtropical estuary. We employed a general before-after-control-impact approach using trawls conducted prior (before) and subsequent (after) to storm arrival and years either without (control) or with (impact) storms. We examined whether effects were apparent over short (within ~three weeks of impact) and seasonal (May-October) timescales, as well as if the magnitude of storm-related shifts varied as a function of storm intensity. Our findings suggest that the ability of these shallow-water habitats to support juvenile fishes was not dramatically altered by hurricanes. The resilience exhibited by fishes was likely underpinned by the relative persistence of the seagrass habitat, which appeared principally undamaged by storms based upon review of available–albeit limited seagrass surveys. Increasing cyclone intensity, however, was correlated with greater declines in catch and may potentially underlie the emigration and return rate of fish after cyclones. Whether estuarine fishes will continue to be resilient to acute storm impacts despite chronic environmental degradation and predicted increases major tropical cyclone frequency and intensity remains a pressing question

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P &lt; 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P &lt; 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
    corecore