33 research outputs found

    Emodin Regulates Glucose Utilization by Activating AMP-activated Protein Kinase

    Get PDF
    AMP-activated protein kinase has been described as a key signaling protein that can regulate energy homeostasis. Here, we aimed to characterize novel AMP-activated kinase (AMPK)-activating compounds that have a much lower effective concentration than metformin. As a result, emodin, a natural anthraquinone derivative, was shown to stimulate AMPK activity in skeletal muscle and liver cells. Emodin enhanced GLUT4 translocation and [C-14]glucose uptake into the myotube in an AMPK-dependent manner. Also, emodin inhibited glucose production by suppressing the expression of key gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, in hepatocytes. Furthermore, we found that emodin can activate AMPK by inhibiting mitochondrial respiratory complex I activity, leading to increased reactive oxygen species and Ca2+/calmodulin-dependent protein kinase kinase activity. Finally, we confirmed that a single dose administration of emodin significantly decreased the fasting plasma glucose levels and improved glucose tolerance in C57Bl/6J mice. Increased insulin sensitivity was also confirmed after daily injection of emodin for 8 days using an insulin tolerance test and insulin-stimulated PI3K phosphorylation in wild type and high fat diet-induced diabetic mouse models. Our study suggests that emodin regulates glucose homeostasis in vivo by AMPK activation and that this may represent a novel therapeutic principle in the treatment of type 2 diabetic models.close

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Protective Effects of Withagenin A Diglucoside from Indian Ginseng (Withania somnifera) against Human Dermal Fibroblast Damaged by TNF-α Stimulation

    No full text
    Human skin is constructed with many proteins such as collagen and elastin. Collagen and elastin play a key role in providing strength and elasticity to the human skin and body. However, damage to collagen causes various symptoms such as wrinkles and freckles, which suggests that they are important to maintain skin condition. Extrinsic or intrinsic skin aging produces an excess of skin destructive factors such as tumor necrosis factor (TNF)-α, which is a major mediator of the aging process. In aged skin, TNF-α provokes the generation of intracellular ROS (reactive oxygen species). It triggers the excessive secretion of MMP-1, which is a collagen-degrading enzyme that causes the collapse of skin collagen. Therefore, we aimed to search for a natural-product-derived candidate that inhibits the skin damage caused by TNF-α in human dermal fibroblasts. In this study, the protective effect of withagenin A diglucoside (WAD) identified from Withania somnifera against TNF-α-stimulated human dermal fibroblasts is investigated. W. somnifera (Solanaceae), well-known as ‘ashwagandha’, is an Ayurvedic medicinal plant useful for promoting health and longevity. Our experimental results reveal that WAD from W. somnifera suppresses the generation of intercellular ROS. Suppressing intracellular ROS generation inhibits MMP-1 secretion and the collapse of type 1 collagen. The effect of WAD is shown to depend on the inhibition of MAPK phosphorylation, Akt phosphorylation, c-Jun phosphorylation, COX-2 expression, and NF-κB phosphorylation. Further, WAD-depressed expression of the pro-inflammatory cytokines IL-6 and IL-8 triggers various inflammatory reactions in human skin. These findings suggest that WAD has protective effects against skin damage. Accordingly, our study provides experimental evidence that WAD can be a potential agent that can be applied in various industrial fields, such as cosmetics and pharmaceuticals related to skin aging

    Effects of novel isoform-selective phosphoinositide 3-kinase inhibitors on natural killer cell function.

    No full text
    Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investigational inhibitors to compare the function of p110α and other isoforms in natural killer (NK) cells, a key cell type for immunosurveillance and tumor immunotherapy. Inhibitors of all class I isoforms (pan-PI3K) significantly impaired NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity against tumor cells, whereas p110α-selective inhibitors had no effect. In NK cells stimulated through NKG2D, p110α inhibition modestly reduced PI3K signaling output as measured by AKT phosphorylation. Production of IFN-γ and NK cell-derived chemokines was blocked by a pan-PI3K inhibitor and partially reduced by a p110δinhibitor, with lesser effects of p110α inhibitors. Oral administration of mice with MLN1117, a p110α inhibitor in oncology clinical trials, had negligible effects on NK subset maturation or terminal subset commitment. Collectively, these results support the targeting of PIK3CA mutant tumors with selective p110α inhibitors to preserve NK cell function

    Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells

    No full text
    Pistachio milk (PM), an extraction product of pistachio, is protein- and fat-dense food. Short-chain fatty acids (SCFAs) are known for inducing cytotoxicity and apoptosis in colon carcinoma cells. This study aimed to find an optimal combination of probiotics that can produce a higher amount of SCFAs in PM. In addition, the anti-cancer effect of fermented PM on human colon carcinoma cells (Caco-2) was determined. The combinations of probiotics were as follows: Streptococcus thermophilus + Lactobacillus bulgaricus (C); C + Lactobacillus acidophilus (C-La); C + Lactobacillus gasseri (C-Lg); C + Bifidobacterium bifidum (C-Bb). The results indicated that fermented PM was produced after a short fermentation time in all the probiotics combinations. C-Bb produced up to 1.5-fold more acetate than the other probiotics combinations did. A significant amount of cytotoxicity, i.e., 78, 56, and 29% cell viability was observed in Caco-2 cells by C-Bb-fermented PM at 1, 2.5 and 5%, respectively. C-Bb-fermented PM (5%) induced early and late apoptosis up to 6-fold. Additionally, Caco-2 cells treated with C-Bb-fermented PM significantly induced the downregulation of α-tubulin and the upregulation of cleaved caspase-3, as well as nuclear condensation and fragmentation. Our data suggest that fermented PM, which is rich in acetate, may have the potential as a functional food possessing anti-colon cancer properties

    Isoform-selective inhibitors have little effect on cytotoxicity of human NK cells.

    No full text
    <p>(<b>A</b>) K562 cells were labeled with <sup>51</sup>Cr and co-cultured with human primary NK cells at the indicated E:T ratios in the presence of 1 µM indicated inhibitors (TGX-221, GDC-0941, and ZSTK474 were 0.5 µM) for 2 h. Specific <sup>51</sup>Cr release was measured as described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099486#pone.0099486-Regunathan1" target="_blank">[46]</a>. (<b>B</b>) K562 cells were labeled with calcein AM and co-cultured with human NKL cells at 10∶1 E:T ratio in the presence of 1 µM indicated inhibitors (TGX-221 was 0.5 µM) for 2 h. Culture supernatants were collected and calcein fluorescence was measured and analyzed as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099486#pone-0099486-g001" target="_blank">Figure 1</a>. The data are expressed as the means ± SEM of three independent experiments. An asterisk denotes any response that is significantly different from the vehicle control group as determined by the unpaired Student's <i>t</i> test using Sigma Plot 10 software (*, <i>p</i><0.05, **, <i>p</i><0.01, and ***, <i>p</i><0.001).</p

    A pan-PI3K inhibitor, but not isoform-selective inhibitors, suppresses ADCC.

    No full text
    <p>CCRF-CEM, human acute T lymphocytic leukemia cell line was labeled with calcein AM, incubated with mouse anti-human CD4 mAb, and then co-cultured with NK cells at 10∶1 E:T ratio in the presence of indicated inhibitors for 2 h. Culture supernatants were collected and calcein fluorescence was measured and analyzed as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099486#pone-0099486-g001" target="_blank">Figure 1</a>. The values are presented as the means ± SEM from three independent experiments. *<i>p</i><0.05 and **<i>p</i><0.01, as determined by the unpaired Student's <i>t</i> test using Sigma Plot 10 software and as compared to the vehicle control group.</p
    corecore