331 research outputs found

    An equivalent classical plate model of corrugated structures

    Get PDF
    AbstractAn equivalent classical plate model of corrugated structures is derived using the variational asymptotic method. Starting from a thin shell theory, we carry out an asymptotic analysis of the strain energy in terms of the smallness of a single corrugation with respect to the characteristic length of macroscopic deformation of the corrugated structure. We obtained the complete set of analytical formulas for effective plate stiffnesses valid for both shallow and deep corrugations. These formulas can reproduce the well-known classical plate stiffnesses when the corrugated structure is degenerated to a flat plate. The extensionā€“bending coupling stiffnesses are obtained the first time. The complete set of relations are also derived for recovering the local fields of corrugated structures

    Argyres-Douglas Theories, Chiral Algebras and Wild Hitchin Characters

    Get PDF
    We use Coulomb branch indices of Argyres-Douglas theories on S1ƗL(k,1) to quantize moduli spaces M_H of wild/irregular Hitchin systems. In particular, we obtain formulae for the "wild Hitchin characters" -- the graded dimensions of the Hilbert spaces from quantization -- for four infinite families of M_H, giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in M_H under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform STkS in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising

    Climate change impact on China food security in 2050

    Get PDF
    Climate change is now affecting global agriculture and food production worldwide. Nonetheless the direct link between climate change and food security at the national scale is poorly understood. Here we simulated the effect of climate change on food security in China using the CERES crop models and the IPCC SRES A2 and B2 scenarios including CO2 fertilization effect. Models took into account population size, urbanization rate, cropland area, cropping intensity and technology development. Our results predict that food crop yield will increase +3-11 % under A2 scenario and +4 % under B2 scenario during 2030-2050, despite disparities among individual crops. As a consequence China will be able to achieve a production of 572 and 615 MT in 2030, then 635 and 646 MT in 2050 under A2 and B2 scenarios, respectively. In 2030 the food security index (FSI) will drop from +24 % in 2009 to -4.5 % and +10.2 % under A2 and B2 scenarios, respectively. In 2050, however, the FSI is predicted to increase to +7.1 % and +20.0 % under A2 and B2 scenarios, respectively, but this increase will be achieved only with the projected decrease of Chinese population. We conclude that 1) the proposed food security index is a simple yet powerful tool for food security analysis; (2) yield growth rate is a much better indicator of food security than yield per se; and (3) climate change only has a moderate positive effect on food security as compared to other factors such as cropland area, population growth, socio-economic pathway and technology development. Relevant policy options and research topics are suggested accordingly

    An Effective Privacy-Preserving Algorithm Based on Logistic Map and Rubikā€™s Cube Transformation

    Get PDF
    Security and privacy issues present a strong barrier for users to adapt to cloud storage systems. In this paper, a new algorithm for data splitting called EPPA is presented to strengthen the confidentiality of data by two-phase process. In EPPA, data object is organized to be several Rubikā€™s cubes executed for several rounds transformation at the first phase. In every round, chaotic logistic maps generate pseudorandom sequences to cover the plaintext by executing Exclusive-OR operation to form the cipher. Then logistic map is used to create rotation policies to scramble data information based on Rubikā€™s cube transformation. At the second phase, all cubes are unfolded and combined together as a cross-shaped cube, which will be partitioned into a few data fragments to guarantee that every fragment does not contain continuous bytes. These fragments are stored on randomly chosen servers within cloud environment. Analyses and experiments show that this approach is efficient and useable for the confidentiality of user data in cloud storage system

    Fast Optical Transients from Stellar-Mass Black Hole Tidal Disruption Events in Young Star Clusters

    Get PDF
    Observational evidence suggests that the majority of stars may have been born in stellar clusters or associations. Within these dense environments, dynamical interactions lead to high rates of close stellar encounters. A variety of recent observational and theoretical indications suggest stellar-mass black holes may be present and play an active dynamical role in stellar clusters of all masses. In this study, we explore the tidal disruption of main sequence stars by stellar-mass black holes in young star clusters. We compute a suite of over 3000 independent N-body simulations that cover a range in cluster mass, metallicity, and half-mass radii. We find stellar-mass black hole tidal disruption events (TDEs) occur at an overall rate of up to roughly 300 Gpcā»Ā³ yrā»Ā¹ in young stellar clusters in the local universe, with the majority occurring through binary--mediated dynamical encounters. These TDEs are expected to have several characteristic features, namely fast rise times of order a day, peak X-ray luminosities of at least 10ā“ā“ erg sā»Ā¹, and bright optical luminosities (roughly 10ā“Ā¹āˆ’10ā“ā“ erg sā»Ā¹) associated with reprocessing by a disk wind. In particular, we show these events share many features in common with the emerging class of Fast Blue Optical Transients

    Equivariant Verlinde algebra from superconformal index and Argyres-Seiberg duality

    Get PDF
    In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the ā€œCoulomb branch indexā€ of the class SS theory T[Ī£,G] on L(k,1)ƗS^1, the other is the LGLG ā€œequivariant Verlinde formulaā€, or equivalently partition function of LGCLGC complex Chernā€“Simons theory on Ī£Ć—S^1. We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual LGLG. When G is not simply-connected, we provide a recipe of computing the index of T[Ī£,G] as summation over the indices of T[Ī£,G] with non-trivial background ā€™t Hooft fluxes, where G is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for G=SU(2) or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU(N) or PSU(N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyresā€“Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients

    VQCNIR: Clearer Night Image Restoration with Vector-Quantized Codebook

    Full text link
    Night photography often struggles with challenges like low light and blurring, stemming from dark environments and prolonged exposures. Current methods either disregard priors and directly fitting end-to-end networks, leading to inconsistent illumination, or rely on unreliable handcrafted priors to constrain the network, thereby bringing the greater error to the final result. We believe in the strength of data-driven high-quality priors and strive to offer a reliable and consistent prior, circumventing the restrictions of manual priors. In this paper, we propose Clearer Night Image Restoration with Vector-Quantized Codebook (VQCNIR) to achieve remarkable and consistent restoration outcomes on real-world and synthetic benchmarks. To ensure the faithful restoration of details and illumination, we propose the incorporation of two essential modules: the Adaptive Illumination Enhancement Module (AIEM) and the Deformable Bi-directional Cross-Attention (DBCA) module. The AIEM leverages the inter-channel correlation of features to dynamically maintain illumination consistency between degraded features and high-quality codebook features. Meanwhile, the DBCA module effectively integrates texture and structural information through bi-directional cross-attention and deformable convolution, resulting in enhanced fine-grained detail and structural fidelity across parallel decoders. Extensive experiments validate the remarkable benefits of VQCNIR in enhancing image quality under low-light conditions, showcasing its state-of-the-art performance on both synthetic and real-world datasets. The code is available at https://github.com/AlexZou14/VQCNIR.Comment: This paper is accepted by AAAI202

    InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset

    Get PDF
    Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms
    • ā€¦
    corecore