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1. Introduction

Corrugated structures have been widely used in civil, automo-
tive, naval and aerospace engineering, to name only some, dia-
phragms for sensing elements, fiberboards, folded roofs,
container walls, sandwich plate cores, bridge decks, ship panels,
etc. (Andreeva, 1966; Mccready and Katz, 1939; Seaquist, 1964;
Baum et al., 1981; Carlsson et al., 2001; Liang et al., 2001; Davalos
et al., 2001; Buannic et al., 2003; Aboura et al., 2004; Talbi et al.,
2009; Haj-Ali et al., 2009; Viguié et al., 2011). Recently, corrugated
structures are also applied for flexible wings or morphing wings
(Yokozeki et al., 2006; Gentilinia et al., 2009; Thill et al., 2010)
due to their unique characteristics of having orders of magnitude
different stiffnesses in different directions.

Although commercial codes allow one to analyze corrugated
structures by meshing all the corrugations using shell elements
or solid elements, it is not a practical way to finish prototype in a
timely manner as it requires significant computing time, particu-
larly if the structure is formed by hundreds or thousands of corru-
gations. The common practice in analysis of corrugated structures
is to model it as an equivalent flat plate, which is possible if the
period of corrugation is much smaller than the characteristic
length of macroscopic deformation of the structure (see Fig. 1).
For example, to model the corrugated structure using the Kirchhoff
plate model, also called the classical plate model, we need to ob-
tain the following strain energy by analyzing a single corrugation:
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where x,y are the two in-plane coordinates describing the equiva-
lent plate, €, €y, €, the membrane strains, Ky, iy, iy, the curva-
ture strains, A, Dj and B represent extension stiffnesses, bending
stiffnesses, and extension-bending couplings, respectively. The
stiffness matrix in Eq. (1) could be in general populated for an
equivalent plate model of general corrugated structures. However,
it will be shown later that some of the stiffness constants vanish
as shown in Eq. (1) for a corrugated structure made of a single
isotropic material.

The literature is rich in equivalent plate modeling of corrugated
structures with the first treatment known to the authors dated
1923 (Huber, 1923) and a very recent treatment appeared in
2013 (Bartolozzi et al., 2013). Various methods with different lev-
els of sophistication were used in numerous studies. Generally
speaking, existing methods can be generally classified either as
engineering approaches based on various assumptions or asymp-
totic approaches based on asymptotic analysis of governing differ-
ential equations of a shell theory. Most methods fall in the category
of engineering approaches which invoke various assumptions for
boundary conditions and force/moment distribution within the
corrugated structure. For a given state of constant strain, the actual
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(or assumed) distributions of forces and moments within the cor-
rugated structure will be determined. Then force or energy equiv-
alence is used to derive the corresponding stiffness constants (see
Briassoulis, 1986; Xia et al., 2012; Bartolozzi et al., 2013 and refer-
ences cited therein). Although both analytical approach and finite
element analysis can be used to predict these stiffness constants,
the analytical approach has the advantage of providing a set of
close-form expressions in terms of the material and geometry
characteristics of the corrugated structure while the finite element
analysis predicts values which are valid for a specific corrugated
structure. Asymptotic approaches exploit the smallness of a single
corrugation with respect to characteristic length of macroscopic
deformation of the corrugated structure (Andrianov et al., 1998;
Manevich et al., 2002; Arkhangelskii and Gorbachev, 2007; Andria-
nov et al., 2009). Substituting asymptotic expansion of the field
variables into the governing differential equation of the shell
theory, a series of system of governing differential equations corre-
sponding to different orders can be solved to find the relationship
between the equivalent plate and the corrugated structure. Be-
cause different methods are used to treat this problem, it is not
surprising that different results are obtained in previous studies,
which will summarized and compared here.

2. Results

To facilitate the comparison of different results in the literature,
we need to set up the necessary notations. Let x be the Cartesian
coordinate in the corrugation direction and ¢ the projected length
of the corrugation Fig. 2. We denote by X =%, the dimensionless
“cell coordinate”. Within a cell, X changes between —1/2 and

1/2. For any parameter, f, changing within a cell, {f) = j%lf(X)dX.

The shape of the corrugation is described by the x;(X) which is a
periodic function with the period unity. Without loss of generality,
one can set

(x3) =0, (2)

by shifting the observer’s frame in the vertical direction. Let us also
denote

_dxs(x) _ do(X) _ 2

R S 2
we can compute the arc-length of the corrugation S and the mo-
ment of inertia along the corrugation direction I, as

S=e(va), I, =he?(§*Va). 4)

X3 = 8¢(X)7

2.1. Results from previous studies

Seydel (1931) followed Huber (1923) and obtained the follow-
ing formulas for the equivalent bending stiffnesses

Equivalent plate stiffness

ABD matrix

Fig. 1. Equivalent plate modeling of corrugated structures.

T, =x

Fig. 2. Shell geometry and unit cell.

ER® S ER’
DH = E

&
S12(1 -2y’ D1z =0, Dz =Ely, Des = 24(1+v)
(3)

Here h denotes the thickness Fig. 3. It is assumed that the corru-
gated plate is made of isotropic elastic material with the Young'’s
modulus E, and the Poisson’s ratio v. These results are also widely
cited in textbooks (Szilard, 1974; Bending et al., 1976; McFarland
et al.,, 1972). In later works, approximations for S and I, for different
corrugated shapes were obtained (Lekhnitskii, 1968; Szilard, 1974;
Lau, 1981; Lee, 1981). A review of different approximate formulas of
S and I, for various corrugation shapes can be found in Luo et al.
(1992). This is not needed as it is easy to evaluate the two integrals
in Eq. (4) accurately for any given corrugated shape using comput-
ers nowadays.

Later, Briassoulis (1986) proposed the following modified
relations

e ERW
Dllzgmy Dyy = vDyy,
EhT? ER® ER®
Do ==+ 3a = P =2aqw ®)

Here T is the rise of the corrugations measured to middle surface as
shown in Fig. 3. Briassoulis correctly recognized D, due to the
Poisson’s effect. However, as will be shown later, the formulas for
Dy, and Dgs are not correct. The expression for D, is obtained by
assuming a sinusoidal corrugated profile, x; = Tsin(2mx/¢).
Briassoulis’s relations are also used in Liew et al. (2006, 2009) and

Fig. 3. Unit cell of a corrugated structure (sinusoidal shape is used for illustration).
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Wennberg et al. (2011) with D,, modified in Liew et al. (2006) for a
trapezoidal corrugated profile.

Recently, Xia et al. (2012) obtained the following formulas for
bending stiffnesses

e ERW
D11=§m, Dy; =Dy,

El, 1 ER’ S EW
D22‘17v2+<7a>12(17v2)’ Dss =% 2217w @

There are other bending stiffnesses proposed in the literature such
as those cited by Samanta et al. (1999) from Easley et al. (1969) and
Easley (1975) which are not listed here because they are not as
complete and accurate as those listed here.

The equivalent extension stiffnesses were originally found for
applications such as roofs and shear walls in 1960-70s (EI-Atrouzy,
1969; Abdel-Sayed, 1970; Marzouk et al., 1973; Davies, 1976;
El-Atrouzy and Abdel-Sayed, 1978; Easley, 1975). The commonly
accepted formulas in literature are:

Eh
20+v)
(8)

Later, in Briassoulis (1986), Briassoulis provided different formulas
for An and A66

Az = VAn,

Ao =Eh, Ags =

™

ER’ Eh
Al] = 2 2 A66 =95/1 . N
h*+6(1-v)T (72* = sm2“5)

2ne

with Ay; = vA;; and A, the same as that in Eq. (8). Again, the
expression for A;; is obtained by assuming a sinusoidal corrugated
profile, x; = Tsin(2nx/s)

Recently, Xia et al. (2012) obtained the following formulas for
extension stiffnesses

EW’ 1
A11 = ) I, A12 = VA1]7
12(1_V)<T>h_2+F
1 1-—v2 ¢ Eh
Ay = VA += Eh<1V2 4(1—}—\))2>7 A66=§2(1+V). (10)

Andrianov et al. (1998, 2009), Manevich et al. (2002) and
Arkhangelskii and Gorbachev (2007) obtained different equations
by asymptotic analysis of elasticity equations, but the origin of
deviations remains unclear.

2.2. Present results

We obtained the following general relations for the equivalent
plate stiffnesses for corrugated structures:

E 12&{pA) Eh 1\1
A11:1_v2 he? +1—V2<\/—>Cz7 Az = VAn,
Ap = Eh<\/a> + V2A11~, Ass = pthoy,

E 128({pA) Eh 1\1
B = 12 hCZ B 1-2 <\/_> C2 Be, B = VB117

By, = Eh8<\/a¢> + VZB]]7 Bgs = ,uhofz,

ER® 12%643° 1 Eh &8/ 1
Dy = ( (QA) +—= | + 57— <—>,

12(1 —v2) | pic? (va) 1-v2 2 \va
ER’
=Ehe?(¢*Va) + <\/—> +v?D11, D1z = VvDii,
2
h/va 1 h—ﬁ”a—aaz
Dse—%<Th2—%% . an
1+ 25w

where
< > 1 Va
0= o rapaf- (5 w-1 /(L)
h va 1+%
e
12?11,2112 >7 (12)
48#2a3
X X
—/ \/E¢(Y)dY+B/ vady (13)

0 0

We also obtained the following relations for recovering the shell
strains in the original corrugated structure:

h? 4 h 'Ky
2 \/_Cz vy 7e  12ea
P, = 1o
+

48¢2a3

M = ava—va(ey + x3Kyy),

]2X3
V22 = €y + Xakyy, 9?1 = a(q h72+ C4> + Wiy,

2/aKyy + 1
2p0 — vy + Zm , 0o _ _ K. (14)
12 ]+4(§§zh:3 22 Ja yy
with
eB(v311 + Vv — (1 +ve
o = (311 3,226) (V14 2.2)7 (15)
Cy =01 (V124 v21) — 052?1312, (16)
1 (x3va)

C4 = ———= (V311 + VU3, 17
4 <\/E>( 3.11 322) — 2 C1 <\/—> (17)

In general, the coupling stiffnesses, Bj, contrary to what has been
commonly assumed the literature, are not zero. They vanish, how-
ever, for symmetric corrugations of which ¢(X) is an odd function
of X.

—¢(X) = ¢(=X), (18)

and due to periodicity of ¢(X), ¢(1/2) = 0. Derivative ¢ = d¢/dX is
an even function, and so is a = 1 + @?. Therefore, ¢/a is an odd
function, (¢+/a) = 0. Thus B = 0. Derivative ¢’ is an odd function
thus o = 0. The equivalent plate stiffnesses can be simplified for
a symmetric corrugation as

2
An = 1 _Evz 128hé(2p./4> 1 Iihvz <\}_> 6127 Az = VAn,
Ay = Eh(\/a) + V*An, Aes = tthoty, Biy = Biy = By = Bgs =0,
3 3
Dn—#hivzHl) Dy, = Ehe?{($*Va) + Eh <f>+VZD117
h g2
D1z =vD11, Des ='[Zh<\éah 1 122&2722;, > (19)
f a1 +4(gL2a3

The formulas for ¢y, ¢y, c4 needed for recovery relations in Eq. (14)
can also be simplified for a symmetric corrugation.

(Z/],l + Vﬂziz)
C b

(V311 + V322)

(va)

€ =- G =01(Vig+v21), Ci=

(20)

2.3. Discussion of the results

First, we perform a simple consistence check for all the results.
For equivalent plate stiffnesses to be valid for general corrugated
structures, they should be able to reproduce the well-known clas-
sical plate stiffnesses when the corrugated structure degenerated
to be a flat plate, for which we have
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p=¢p=A=B=0, Va=1, C=-1, ay=1, =0

(21)

The expressions in Eq. (11) are indeed simplified to be the well
known stiffness formulas for the classical model of isotropic homo-
geneous plates.

The bending stiffnesses in Eq. (5) cannot reproduce the case of a
flat plate while those in Egs. (6) and (7) can. However, none of the
extension stiffness from previous studies can reproduce the case of
a flat plate.

For shallow corrugation, we know ¢ ~ é < 1 and no specific or-
der can be said regarding the magnitude of & We can use this small
parameter to simplify our formulas. We have

X 1 1 R\
BNb7 C——<%>, “]—m, 0(2—3{1<128a>/\/() (22)

The leading terms of the equivalent plate stiffness are

Eh 1
A= T2 7\ A =VAn, Ax =Eh(V/a)+V?An,
(&)

uh Eh 1
Ass = =, Bii=5—757—<B¢ Bia=VBi,

(Va) 1-v <%>

X ER’

By, = Eh8<\/a¢> +V°By1, Bgs = ,uhflz, Dy = —

12(1-v?) (Vay’

Dy; =vDy; D En° +v2D D, :H—2<\/6> (23)
12 11 22 = .12 \/— 11, 66 12 .

Note B;; vanish for symmetric corrugations. The above formulas can
degenerate to those for a flat plate. Comparing to the results from
previous studies, we can see that Seydel’s formulas (Seydel, 1931)
for Dq; and Deg in Eq. (5) can be used for shallow corrugations. How-
ever Dy, and Dy, are not valid for shallow corrugations. Briassoulis’
formulas (Briassoulis, 1986) for Dy; and Dy, in Eq. (6) are valid for
shallow corrugations but Dy, and Dgg are not valid. The formulas
of Xia et al. (2012) in Eq. (7) can be used for shallow corrugations
except Dy,.

For most corrugated structures, we have h/¢ < 1. This small
parameter can be used to simplify our formulas. We have

& 1
Cr —-12(pA)—, o1 ~-—— 24
(@A) n~ (24)
The leading terms of equivalent plate stiffnesses become:
A 75—}13 A =VA Ay = Eh{\/a)
“_12(1—v2)82<(pA>7 12 =VAn, Ap = )
__ph EN’B _
A66—<\/a>7 By = (1_v2 S(pA)’ Biy = VBi1,
_ ph’ >
By, = Ehe{¢v/a), Bgs = 12¢ (
ER’ B 1
Pu =13y <<¢A> <f>>’ D2 =P
uh3
Dy, = Ehe?(¢*Va),  Dss =15 (Va). (25)

As follows from Eq. (25), among the extension stiffnesses the largest
ones are Ay, and Ags, While A;; and Ay, contain small factor (h/s)zz

h\? h\?*
A~z () o~ () o (26)

This corresponds to softness of the corrugated plate in the direction
of corrugation. Similarly, for bending stiffnesses, the largest stiff-
ness is D,,, and

B 2
Dy ~ D1z ~ (E) D2, ~ Deg. (27)
Among the coupling stiffnesses the largest one is By, while

2
Bi1 ~ Bz ~ <E> By ~ Bgs. (28)

The equivalent plate stiffness for symmetric corrugations have the
form:

ER?
Ay — Ay = VA, Ay = ER(Va),
11 12(1—\)2)82((;52\/5)’ 12 = VA1, 22 <\/a>
_ph B ER? B
A66—7<\/a>7 Dy AW Dy = vDyy,
3
Dy, = Ehe? (¢*/a), D%Jﬂ (Va). (29)

Comparing to the results from previous studies, we can see that
(Seydel, 1931) obtained the correct bending stiffnesses except D,
in Eq. (5), (Briassoulis, 1986) obtained the correct bending stiffness-
es except D,; and Dgg in Eq. (6). Xia et al. (2012) obtained the correct
bending stiffnesses except Dy, in Eq. (7).

As far as extension stiffnesses are concerned, the commonly ac-
cepted formulas in 1960-70s, Eq. (8), are correct if T? is defined as
half of the average of x} over the corrugated profile, i.e. T* = @
The modified extension stiffnesses in Eq. (9) by Briassoulis (1986)
are in fact wrong. The first three formulas of the extension stiff-
nesses by Xia et al. (2012) in Eq. (10) are correct if higher order
term in Aj; is neglected. A,, is approximately correct as the term

1 112

1-v2 4(14v)?

Most of the previous studies focused on obtained the equivalent
plate stiffnesses without paying attention to the local stress/strain
field within the original corrugated structure, expect Briassoulis
attempted to recover the local stress based on the forces and
moments obtained from the equivalent plate analysis in Briassoulis
(1986). Such relations are derived based on an assumed sinusoidal
corrugated profile. However, as we have already shown that half of
the equivalent plate bending and extension stiffnesses from
Briassoulis (1986) are not correct. The accuracy of the recovery
relations can only become worse. Hence, Briassoulis’ recovery
relations are not listed here and compared with ours.

is very close to unity for normal materials.

3. Shell formulation of corrugated structures

Thin-walled corrugated structures can be effectively described
by the classical shell theory if the thickness is small compared to
the minimum curvature radius, which is of the order of the corru-
gation period. We choose a Cartesian coordinate system x; with
basic vectors e;. Throughout the paper, Latin indices run through
the values 1, 2, and 3; Greek indices assume values 1 and 2, and
summation is conducted over repeated indices except where
explicitly indicated. The position vector of the shell mid-surface
can be considered as a function of coordinates x; and x:

l'(X],Xz) = X1é1 + Xzéz + X3é3. (30)

If there are corrugations along both x and y directions, x3 is a func-
tion of both coordinates x; and x,. Herein, we restrict our consider-
ation to the case of periodic corrugations in one direction, x, as in
Fig. 2. The tangent vectors a, of the shell surface can be obtained

by differentiating the position vector with respect to
Xy, dy = Or/0X,, SO that
a;=e +pxe;, a;=e, (31)
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For brevity uses, we also write a, = r,&;, which implies
= (X), ;=1 1r=0. (32)

The metric tensor of the shell surface, a,;, is defined as

n=1, rP=0, ry =0,

aa,; =dy- a,, (33)

The contravariant components of the surface metric tensor a* are
defined according to a**a,; = d,,,d,, being the two-dimensional
Kronecker symbol.
The normal vector of the shell mid-surface is:
L R (34)
arxa va' \/—

The second quadratic form of the shell mid-surface is defined as
03 4.

b=

35)

Hence, we have

1d
b1y :7561_()6’ b1z

1 do

1
:bzz:O7 b]:ma7

2 1 2
by =b, =b5 =0,
(36)
where b = a*’b,.
The Christoffel symbols can be found from the equation:

1 /0a,; 0ags 0Oa
I Loy o8 ps  Olyp . 7
w =74 (0)(,; + Xy OXs (37)

Using Eq. (33), we obtain that all components of FM vanish except
1 1dl
1 da 1 dina (38)

17 2adx 2 dx

According to the general theory of periodic structures (Bakhvalov,
1974; Bakhvalov and Panasenko, 1989) (see also Berdichevsky,
2009 chapter 17), the functions describing the behavior of the shell
should be considered as functions of the cell coordinate X, and slow
coordinates x, and y. All the geometric characteristics we just intro-
duced are functions of X only, e.g.

_ do(X) _ 1 do
X3 = &p(X), X) ax b = m ax’
] 1 dqo 1 1 dlna
T dx T2 dx (39)

Let u;(X,x,y) be the components of the displacement vector. The
extension strains y,, and bending strains p,, are expressed in terms
of u; as follows (Berdichevsky, 2009):

2 ou; ;o
Vap _r“ax L /‘E)xa

9 ( ou o ( ou , ou y .

2P = x, ("' W) *ox, (”' a7,> =20+ 0(enb) + eb)
(40)

where s denotes surface Levi-Civita tensor

(e11 = ey = 0,e13 = —ey1 = Va). 0 is the angle of rotation of the sur-
face elements around the normal vector:

1 i oup - ; ou;
=—=(r - (41)

2va\ ' ox; X
Note that u' = u; because u; are the displacement components in the
Cartesian coordinate systems e;. While y,, and p,, are tensor com-
ponents in surface coordinates, and, therefore the components with

upper indices acquire additional metric factors. Because X = x; /¢,
we have

ou,_ou,
ox,  Ox

ou; 0X 8u,
ax 8)( ‘x const 3)( ‘X const —

1
u,‘ + Ujq, (42)

du,

with  uf = denote

. du
ax, —oy”

The elastic behavior of the shell is governed by its strain energy
density which is given by the following expression:

2
® = ph (0((1“/“/%) + a“ﬁa")ywv,;é)

n 2 n
5 (o(aps) +aa .0, ). (43)

Here in Eq. (43) u = E/2(1 + v) is the shear modulus, v the Poisson’s
ratio, and ¢ = v/(1 — v). The first part is the extension energy and
second part the bending energy. The strain energy of the unit cell
can be written as

a,
% |x—const and u;; = T Ix—const-  We also

Uip =

= (@)

2 1420 2
:<,m¢a<(1 o) (L4 vy, ) +<1+J)V%z+av%z)>
2
a

+ <'l§_15\/a((1 —+ O’)(bﬁ- szz)z + <11++2:>,0 2ty ,0%2>>
(44)

with v = ¢/(1 + o). Here the material parameters i, ¢ and the shell
thickness h could be functions of X, but for simplicity, we assume
that they are constant.

4. Asymptotic analysis of the shell strain energy

To model the corrugated structure by an equivalent plate, we
start by setting for the shell displacements the presentation fol-
lowing from the general theory of periodic structures (Bakhvalov,
1974; Bakhvalov and Panasenko, 1989):

uzx(X)va) = UM(X,y) +£‘//1(X7X’y)7
U3(X,X7_y) = ?/3(X,y) +8l//3(xvx7y)'

In fact, this is a short cut, and Eq. (45) can be derived by the varia-
tional asymptotic method (Berdichevsky, 2009), chapter 17.2. In Eq.
(45), v; have the meaning of the effective plate displacements, and
y; are some functions which are periodic in X. Without loss of gen-
erality, we can define z; as the average of u; over the cell:

(45)

vi(x,y) = (WX, x,y)). (46)
Then, obviously,
Wi(X,x,y)) = 0. (47)

Substituting Eq. (45) into Eq. (40) and using Eq. (42
the strain measures:

), we obtain for

Vi =V + QU+ Yy + @Yy + (g + Qs y),
29, = Vig+ Va1 + QU2 + Y5 + (Y15 + Yoy + QY3,),
V22 = V22 +8¢227
1 \/_ U
P ZEU (lna) U +Un = p (\/—9 + Uiy, (48)

1.,
2p12 = U]_yz + U2,1 +EU2 +£a—3/2\/56,
P2 = U
Here comma in indices denotes derivatives with respect to x,, prime
the derivative with respect to X. Besides, we introduced the
notations,

Ui =i (w11 +¥7) +ns(¥s + v31) + &(My g + N3is ), (49)
Uy = Mt +N3032 + (N1 5 + NM3ip3 ). (50)
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Rotation 60 can be found from Eq. (41),

2Va0 = 015 — 021 + QU2 — Yo + €1y — Ypy + PY35).

Our objective is to construct an equivalent plate model, i.e. the
equations for #;. To this end, assuming that »; are known, we seek
for the expression of y; in terms of »; and their derivatives.

4.1. Step 1: discarding doubtful terms

Following the variational asymptotic method, we drop all the
terms that are asymptotically small in terms of known small
parameters in the energy functional. To model the corrugated
structure as a flat plate, we implicitly assume that the corrugated
plate is formed by many cells, we have ¢/L <« 1, where L is the
characteristic length of macroscopic deformations. Due to the
smallness of ¢/L, we can drop in the energy the terms associated
with derivatives vy, ; + @y, in y;, terms associated with v, in
27,5, terms associated with U, ; in p,;, terms associated with U,
in 2p,,, terms associated with n;y, ; + nsy5, in U;, terms associ-
ated with y, ; in 2v/a6, and U, in p,,. However, the terms contain-
ing (W + QU W (W12 + QYs,), (1] 5 + N3yl )Y, and
(1 5 + N3y3,)' v, are doubtful as we do not know the relative or-
ders of y; and there is no clear larger terms than these terms. As
suggested in Berdichevsky (2009), we will first discard them and
later to check whether they are indeed asymptotically smaller that
the terms we keep. The leading terms of the energy in the first
approximation are

jo—<,uh\/5<(1+o) (2 +w22>2+ 6= <y32>2+§<v92>2)>

3 2
(il (£ onr-Jon))

(51)

with

Y= v+ eusa Y+ QDIV37 299, = V1o + Va1 + QU32 + Y,

\/— Ul 1 0
Vo =122, Pl = \/a 200, = EU(Z) \/—90
p% = 0. (52)

and

8(13/2

UY = mi(v11 +¥)) + sy + v31)
Ug =MV +N303) (53)
2vab® = vy, — Va1 4 QUss —

Substituting Eq. (53) into the bending strains in Eq. (52) and
considering
ns—np=+va nﬁ:% ng:_a?/go. (54)
we have

vao, @y @
P = (1 -g7) 208 =55z @) (55)

19,, 0%, do not involve ;,279,,20% involve v, only, and 99, p9,
involve Y, y;.

Let us focus on solving y, first. The strain energy in Eq. (51)
related with , is:

2
)= <’”’ﬁa ((2v?2)2 ‘e <2p?2)2) > (56)

We need to minimize 2y%,,2p9, in Eq. (56) over periodic functions
¥, (X) subject to the constraints Eq. (47). The constraints can be
taken care of by introducing the Lagrange multipliers. The corre-
sponding Euler-Lagrange equation is:

1 K’ @' ’
(\/_a <2yl1)2 12 p12 2£a3/2>> —/2=0. (57)
along with boundary conditions
1 h’ '
wio [L(enEangs) e

with the square brackets denoting the difference between the end

values, for example [if,] =y, (%) — ¥, (—1). The second condition in
Eq. (58) leads to /, = 0. Hence:
1 h’ ¢
va (27)(‘)2 12 p‘228a3/2> = (59)
Thus:
vac

20 =——, (60)

149

48¢2a3
, ac:
Vg + V1 + QU3 + 1/12 = % (61)
1 48¢2a3

Integrating Eq. (61) over the cell length, we obtain the constant c;:

a
Vi + V21 = <\/~,2,]2>C27 (62)
1+ e
C2 = (V12 + V21). (63)

Integrating Eq. (61) with respect to X both sides, we have

X
lﬂz = 7X(1/].2 + UZ,]) — (f)Ug,z + / 17dy + const. (64)
0 i A,

Considering the constraint in Eq. (47), we can integrate both sides of
Eq. (64) over the cell length to solve for the constant, and the final
expression for , is

X ac
Yy = =X(v1p + 21) — dU32 + _\/—w,fhz av
0 48¢2a3
X
B < /a i dY>. (65)
o1 + 48:2a3

The strain energy in Eq. (51) related with v, and y; is:

: 2 3 2
]1_<uh\/5(1+6)<%(1)1+vy22) +%x/ﬁ(1+a)<p“+vp22> >
(66)

Similarly, we use Lagrange multiplier to take care of the constraints
of y; and 5 in Eq. (47). The corresponding Euler-Lagrange equa-
tions are:

1M .. h™ /% /(P/ .
(\/a(+v/22>+128 a VP2 a -/ =0,

P (T, _h_ @ 1 ,_ -
(\/a< + /22) 128( +Vp22> a> 43 =0.

along with boundary conditions
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10 '
[¥4]=0, [‘VJ:Ov {ﬁ(hl"‘ sz)‘*‘m(h-i- Pzz) ([)} =0,

) 79 h? 1
Ws1=0, [44]=0, {%(%mgz)_m(”w vp3 )a]o,

{pn i szz}

(68)

The third and sixth conditions in Eq. (68) leads to 4, = 23 =0.
Hence:

1% 0 W ¢ _

Ta <T+ sz> +t 18 (—+ pzz) Fimiar (69)
h "1

%<h+ sz> —m(h‘F pzz) — =03 (70)

Integrate (¢ x (69) — (70)) over the cell length with considering the
seventh conditions in Eq. (68) conclude c¢; = 0.
Then Egs. (69) and (70) can be simplified as:

' 12
(pn +vp22) —q h‘PS (71)
c
(Berwg) =< (72)
Integrate Eq. (71)
12
(p“ +vp22> :c17"3+c4, (73)
Rewrite Eq. (73) considering Eq. (55)
(45 -L9%) = ( x3f+c4f> (74)
Integrate over the cell length with the fact [y} — 299,] =0,¢, is:
(x3v/a)
=—— . 75
“TTRY Ve )
Integrate Eq. (74) considering cj,
, 12¢2
‘/’3‘%“/?1 B —C1A+Cs. (76)
@x (72)+(76) gives
, aep 12
Vs +ve)h, =i P c1 A+ Cs, (77)
Integrating over the cell length, we obtain
® 12¢2
C; = —Cq1 <%> + h2 Cq <A> (78)
Substitute ¢ into Eq. (77):
, 1262
b= —vor v (- (F)) - e A~ (). 79)
Rewrite Eq. (72) as
Vit QUs1 YL+ QU = cva —vayd,, (80)
Substituting Eq. (79) into Eq. (80), we have
Wi = —(v11 + V022 + Qusg) +C (] +(p< (p>>
1 11 22 3.1 1 va \/—
1262
o (@A —@(A)). (81)

Integrate over the cell length:
2

12¢ 1
_ _ 82
V11 + Va2 12 c1{pA) +Cl<\/a>’ (82)
which can be used to solve for c; as
¢ =— (1}1‘1 + VZ/z‘z) . (83)
C
Integrating Eq. (79) both sides with respect to X, we have
X
¢ 4
=—v¢)% +c —dy - X{ =
o= veeva( [ Far-x()
1232
G / AdY — X(A) | + const. (84)

Considermg the constraint in Eq. (47), we can integrate both sides of
Eq. (84) over the cell length to solve for the constant, and the final
expression for 5 is

Vs = v+ </OX il </OX 51) (7))
_ 1}21232 . (/OXAdY— </0X AdY> —X<A>>. (85)

Integrating Eq. (81) both sides with respect to X, we have

X
Vi =—Xvi1 + VX022 4+ dv31) + 01 </0 %dy+¢<%>>
1282 € (/ PAdY — ¢p(A )> + const. (86)

+

Considermg the constraint in Eq. (47), we can integrate both sides of
Eq. (86) over the cell length to solve for the constant, and the final
expression for , is

Vi =—Xvi1 + VX022 + ¢v34)

ol [ ([ ) o)
+1zfzcl</o qudY—</o (pAdY>_¢<,4>>_ (87)

4.2. Step 2: corrected with doubtful terms

Inspecting Eqgs. (65) and (87), we find out that there are ¢vs,
contained in these two functions. This means we cannot drop the
aforementioned terms, (W) + U0, s (ba + @Y32),
(M) 5 + N3y o), and (nyy, , + N3y ,)' Y, completely, but should
keep the major contributions contained in these terms. In the same
way, we also need to recover those terms which are of similar
orders into the strain expressions. Thus, for 79,, we recover
—x3v311 from the neglected term &y ,

Y0 = Vi1 — X U311 + QU3+ + QY. (88)

For 2y9,, we recover —2x3v3;, from the neglected terms

W2 +¥21)

298, = via + Va1 — 2X30312 + QUs2 + Y. (89)
For 79,, we recover —x; 3, from the neglected terms &y, ,

ng = V22 —X3U322. (90)

For p9,, we recover (n; —ni@)vs1 = avsy from the neglected
term Uj 4

0 I
ooy =0 (35) Vv, (91)
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For 2p9%,, we recover (v/a+ n3)vsi, from the neglected terms in
Uiz + Uz,

1 o !
209, = (Va+n3)vsn, +EU3 +8;€/2 Vao®. (92)

For pY,, we recover n;vs 1, from the neglected terms in U,

P = N3032. (93)
For U?, we recover —x; 311 from the neglected term &y,

US = mi(v11 —X3v311 + ) + m3(Ys + v31). (94)
For ug, we recover —x3 31 from the neglected term ey ,

Ug =M (V12 —X3V312) + M3033. (95)

For ¢°, the major terms contributed from the neglected term
e(15 — ¥p,) cancel each other, so that

2Vat° = v15 — v21 + QU3y — Y. (96)
Using Eqs. (94)-(96), we can rewrite the bending strains as
vag '
P = e (% - %V%) +Vavs i,
208, = 2Vavs 1 — 5 0 (2%), (97)
0o _ 1
P = va 322

Substituting this new set of strain measures into Eq. (51), we need
to carry out the solution procedure again. Most of the equations
starting Eq. (56) to Eq. (87) remain the same, except the changes
listed in the Appendix.

5. Equivalent plate energy

Now, everything is ready to compute the equivalent plate en-
ergy. It is convenient to split the first approximation of the strain
energy in Eq. (51) into three parts. J; is associated with energy in
Eq. (66), J, with energy in Eq. (56), and J; with energy

h3
J3= <uh\/6(1 V0% + 5 van + v>(p22>2>. (98)
Let us compute J; first. Using Eq. (72) and Eq. (73)
2 3 2
—_ C1 ,uh 12X3
]] = </.lh\/a(l +0)<%> “rﬁ\/a(l +O')(C1 h2 +C4) >
(99)
Substituting Eq. (17) and Eq. (15) into Eq. (99), J; becomes,
1 1 12
D= v 40 5 (h( o)+ o)
) 2B/ 1\ K (12248 1
+ (V311 +Vv322) uh(1+0) (Cz<\/a> 13 ( e (pA) +<f‘>
o 3
_ (Z/]v] + VU272)(U3,11 + Vl/3,22)‘uh(1 +0') <2§728<%> +2;lzl:;: <(/)A>> .
(100)

Note

_ 2\ 2 7(\/&)(3)2_ 2 <\/&(X378B)>_
(Ve = Be)’) = (Vag) - =2 = 2lod), ~— =0,

Rewriting Eq. (56)

h/1 2 K ' 2
jz—%<\/—a ((2”/?2) +ﬁ<2\/av3‘12—2;5—3/223)(1)2> >> (101)

Substituting Eq. (107) and Eq. (16) into Eq. (101),

_ 2 [ phod va

4 2
, uh<¢ah2_g%—aaé>

t U35 3
e 2 3 @h
\/a 1 +4g82a3
a
— (V12 + v21) U312 pthoi 0 <\/~/22> (102)
1+205
48¢2a3
Substituting y9, in Eq. (90) and p9, in Eq. (97) into Eq. (98),
J3 = U3, th(1 4+ v)(Va) + 5, uh(1 +v) | (Vax3) +E 1
3 2.2 322 3 "12\va
— U2 1)3_222/1"1(1 + V)<\/aX3> (103)
If we set
€x = V11, €y = Va2, 26y = Vip+ V2, (104)
Ko = —U311, Ky = —U322, Ky =—0U312,

we obtain the strain energy in Eq. (1) with the equivalent plate stiff-
nesses listed in Eq. (11).

6. Recovery relations

The equivalent plate stiffnesses constants can be used as inputs
to carry out a plate analysis, either analytically or numerically, to
predict the plate displacement field (7;) and strain field
(Exxs €y, 2€xy, Kxx, Ky, 2Kxy). This information can be used first to
recover displacement field in the original corrugated shell using
Eq. (45) with y; solved previously in Eq. (124), (111), and (122).
Usually it is more critical to know the strain field within the origi-
nal corrugated shell as those given in Eq. (14). The stress resultants
can be recovered using the constitutive relation corresponding to
the strain energy in Eq. (44), which can be used to further recover
the three-dimensional (3D) stresses based on the relations of the
starting shell theory and the three-dimensional elasticity theory.

7. Some examples

In this section, two shapes of corrugations are studied. One is a
sinusoidal corrugation which represents the symmetric case with
no coupling effects, and the other is a exponential-sinusoidal cor-
rugation which is an example of the nonsymmetric corrugations
thus exhibiting coupling effects.

7.1. Sinusoidal shape
The mid-surface of sinusoidal shape,

o(X) = g sin(27X). (105)
is characterized by one parameter, T, the rise of the corrugation
Fig. 3. For numerical values we choose &¢=0.64m,T =0.11 m,
h=0005m and material properties are taken to be
E =30GPa,y =0.2,p = 7830 kg/m3. The equivalent plate stiffness-
es obtained using different approaches are listed in Table 1. VAPAS
is a code introduced in Lee and Yu (2011) for equivalent plate mod-
eling of panels with microstructures starting from the original 3D
elasticity theory. Corrugated structures can be considered as a spe-
cial case of such panels and the results obtained can be used as
benchmark for the present study. For the corrugated profile under
consideration, (¢+/a) =0, and there is no extension-bending cou-
pling. It is seen from Table 1 that the results obtained by the present
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Table 1 Table 2
Equivalent plate stiffnesses of sinusoidal corrugation. Equivalent plate stiffnesses of exponential-sinusoidal corrugation (n = 0.1).
Egs. (5), (8) Xia et al. (2012) VAPAS Present Egs. (5), (8) Xia et al. (2012) VAPAS Present
A1 (N/m) 53805 47613 48152 47613 Ay (N/m) 47139 43765 46366 43911
A (N/m) 10761 9523 9630 9523 Az (N/m)  9427.89 8753.09 9273.22 8782.20
Az (N/m) 18708 x 108 1.8708 x 10° 1.8692 x 10®  1.8708 x 10° Ap(N/m) 16759 x 108 1.7088 x 10° 1.7072 x 108 1.7088 x 10°
Ags (N/m) 50113 x 107 5.0113 x 107 5.0097 x 10’ 5.0113 x 10’ Ass (N/m) 550942 x 107  5.4865 x 107 5.4846 x 107  5.4866 x 10’
Dy; (N-m) 261.004 261.004 263.972 261.004 Bi1 (N) N/A N/A 225.98 204.26
Dy, (N-m) 52.20 52.20 52.95 52.20 By, (N) N/A N/A 42.644 40.851
Dy, (N-m) 1025270 1068260 1022874 1025540 By, (N) N/A N/A 817802 794841
Dgs (N-m) 162.39 162.39 163.38 162.39 Di; (N-m) 291364 285.757 296.106 286.707
Dy (N-m) 58273 57.151 59.679 57.341
Dy (N-m) 13297 x 10° 1.1622 x 10° 11122 x 105 1.1157 x 108
approach are very close to those predicted by VAPAS and Xia et al. Des (N-m) 145.47 14833 153.29 14833

However, the differences between the present approach and the
commonly accepted formulas for A;;,Aq; are noticeable. Note, in
this table, we used D;; = vD;; from Eq. (6). Formula (9) gives
A1 = 39639 N/m, which is also well off the correct result.

We analyzed a square sinusoidal corrugated plate with 11 cor-
rugations subjected to a uniformly distributed pressure using
equivalent plate analysis based on the present theory. The results
agree with those of a direct finite element analysis using ANSYS
with shell elements, as expected. This comparison can be found
in reference Ye (2013).

7.2. Exponential-sinusoidal shape

In the second example, a non-symmetric corrugated shape is
chosen to show the coupling effects. We use an exponential-sinu-
soidal function with unit cell length ¢ = 1 m,

¢(X) _ ’,’(esin(ZnX) _ <eSin(2nX)>)7 (106)

as sketched in Fig. 4. A plot of the dimensionless parameter
B,,/(Ehe) as a function of # is shown in Fig. 5. We choose thickness
h = 0.005 m and material properties E = 30 GPa,v = 0.2. Equivalent
plate stiffnesses obtained by different approaches are listed for

x(m)

Fig. 4. Shapes of nonsymmetric corrugations for different values of parameter #.

0.006 . . .
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0.004

0.003

B, /Ehs

0.002 -

0.001 =

0.000 I
0.00 0.02 0.04 0.06 0.08 0.10

n

Fig. 5. Coupling coefficient B,,/(Ehe) as a function of 7.

comparison in Table 2. Since the corrugation is not symmetric,
the rise of the corrugation T in Eq. (8) is measured as half of the total
swing. Apparently, the extension-bending coupling, particularly the
coupling coefficient By, between 7,, and 73, is not negligible
comparing to other stiffnesses terms as # grows larger. For the other
stiffness constants, the four sets of results also have noticeable
differences for which the present approach and Xia et al. have a
better agreement with VAPAS than the results in Egs. (5), (8) except
A1 and A1

8. Conclusion

The variational asymptotic method has been used to construct
an equivalent plate model for corrugated structures. The theory
handles general corrugation shape providing the original structure
can be described using the classical shell theory and the length of a
single corrugation is small with respect to the characteristic length
of macroscopic deformation of the corrugated structure. The
present theory not only provides a complete set of effective plate
stiffnesses but also the complete set of recovery relations to obtain
the local fields within the corrugated shell.
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Appendix A. Appendix: changes due to doubtful terms

Eq. (60) is replaced with

ho'v
ae, + o

0 _
297, = 1 4(2,22,123 (107)
readi)
Eq. (61) is replaced with
hzf/"”zﬂz
ac; + =
Vizg+ Va1 — 2X30312 + QU3 + Yy = % (108)
1+ 3578
Eq. (62) is replaced with
2
a h_(p_
Bt v = < va_ >cz + < s >v (109
1+ 48¢2a3 T+ 48¢2a3
with ¢, defined in Eq. (16).
Eq. (64) should be replaced with
X
lﬂz = 7X(1/].2 -+ 1)2,1) — (/)V3.2 4+ 2/ X3dyy3'12
0
2
X . Jac ho'vs1p
+/ MialfdeJrconst. (110)
0 1+ 4‘1;22’103
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Eq. (65) should be replaced with

X X
l//z = —X(Z/l,z + ?/2_’1) — (i)l/3,2 + 2(/0 X3dY — </0 X3dY>> U312

2
\/_C +h¢ﬂ312 X\/—C +h(P1/3.12
/ zi,zgmdy— 0 YIeT m gy
48:?2113 1 + 482a3
Eq. (74) should be replaced with
N BN 12
(¢3—E’y“) =& C]FX3\/E+C4\/_—(U3A11+VZ/3,22) . (112)
with ¢4 defined in Eq. (17).
Eq. (76) should be replaced with
, 12 2 X Jady
vh - %y?l =——"ClA+ (f0<£> —X> (v311 +VU322)
+ Cs. (113)

Eq. (77) should be replaced with

X /ady
l//3+Vq)y22 C;l/%o 1}218 A+ (fo(ﬁ;j _X>(Z/3‘11 +VZ/3‘22)+C5.
(114)
Eq. (78) should be replaced with
2 fx vady
s =—C1 <\%> +1’1272851 (A) - 3<0<\/a>>(1/3.11 +V32). (115)
Here, notice (¢px3) = 0.
Eq. (79) should be replaced with
, 1262
by =—vor v (- (Fo)) - TorarA - ()
[Xyady — ([ vady
g( 0 (\/<a>0 >fX (V311 +V322). (116)
Eq. (80) should be replaced with
Vig —X3Us 11 + QU1+ + QY = civa — vays,. (117)
Eq. (81) should be replaced with
Wi =—(V11+ VU2 + QU31) + X3(V311 + VV322)
1 @ 12¢2
ca(Ja o)) i aea- o
¢ Jo Vady — o( fy vady
_ 8( 0 (\/5)< 0 > — @X | (v311 +Vv32). (118)
Eq. (82) should be replaced with
2
Vg + VU2 = TC] <(pA> + 8’3(1}3,11 + V113‘22) +C <%> (119)
with the constant B
(¢ J5 vady)
B= X) —+— L
(“" e
(a) [, xdo — [}, [ vadyd
; (Va)
W) (Xl —(9) - i VadYel, + (Vad) (ag) 120
B (Va) - (Vay

Eq. (83) should be replaced with the definition in Eq. (15).
Eq. (84) should be replaced with

X X
W3 =—Vdva2 + V/O Qx3dYv3 2, + €1 (/o %dy —X<\%>)
12?2 (/ AdY — X(A )) + const

(fo Jo vadzdy - X(J vady) e
+é

wa 2)(”311+VU322)

(121)

Eq. (85) should be replaced with

¥s :—V¢022+V(/ PxsdY — </ ¢x3dy>)yg,22
o 5[ ()
([

(fox Jy vadzdy - [y s vadzdy ) -
+&

x(Jfy \/adY> X1 )

va) 224
X (1)3,11 +V1/3‘22). (122)
Eq. (86) should be replaced with
X
VU = —Xvi1 + VX0, + $v31) +/0 X3dY(v311 + VU3 22)
X 1 d
ra(f oo %)
+ 12¢ 261 (/ PAdY — ¢p(A )) + const
Jo @ Jy vadzdY — ¢(Jy vady) ¥
3( Va /o eXdY | (v
+VU322).
(123)
Eq. (87) should be replaced with
U =—Xvi1 +VXvan + ¢v3g)
X X
+ (/0 x3dY — </0 Xde>>(7/3,n +V32)
Y
ol () -+63)
+7c1 </0 PAdY — </0 qudY> - ¢<A>>
(15 0 vadzay - ([ o [y vadzay) - o( fy vady)
- (Va)
X X
7/ OXdY + </ <dey>)(vg,n FVosa). (124)
0 0
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