8 research outputs found

    Predicting Action Content On-Line and in Real Time before Action Onset - an Intracranial Human Study

    Get PDF
    The ability to predict action content from neural signals in real time before the action occurs has been long sought in the neuroscientific study of decision-making, agency and volition. On-line real-time (ORT) prediction is important for understanding the relation between neural correlates of decision-making and conscious, voluntary action as well as for brain-machine interfaces. Here, epilepsy patients, implantded with intracranial depth microelectodes or subdural grid electrodes for clinical purposes, participated in a "matching-pennies" game against an opponent. In each trial, subjects were given a 5 s countdown, after which they had to raise their left or right hand immediately as the "go" signal appeared on a computer screen. They won a fixed amount of money if they raised a different hand than their opponent and lost that amount otherwise. The question we here studied was the extent to which neural precursors of the subjects' decisions can be detected in intracranial local field potentials (LFP) prior to the onset of the action. We found that combinded low-frequency (0.1-5 Hz) LFP signals from 10 electrodes were predictive of the intended left-/right-hand movements before the onset of the go signal. Our ORT system predicted which hand the patient would raise 0.5 s before the go signal with 68% accuracy in two patients. Based on these results, we constructed an ORT system that tracked up to 30 electrodes simultaneously, and tested it on retrospective data from 7 patients. On average, we could predict the correct hand choice in 83% of the trials, which rose to 92% if we let the system drop 3/10 of the trials on which it was less confident. Out system demonstrates-for the first time-the feasibility of accurately predicting a binary action on single trials in real time for patients with intracranial recordings, well before the action occurs

    Representation of retrieval confidence by single neurons in the human medial temporal lobe

    Get PDF
    Memory-based decisions are often accompanied by an assessment of choice certainty, but the mechanisms of such confidence judgments remain unknown. We studied the response of 1,065 individual neurons in the human hippocampus and amygdala while neurosurgical patients made memory retrieval decisions together with a confidence judgment. Combining behavioral, neuronal and computational analysis, we identified a population of memory-selective (MS) neurons whose activity signaled stimulus familiarity and confidence, as assessed by subjective report. In contrast, the activity of visually selective (VS) neurons was not sensitive to memory strength. The groups further differed in response latency, tuning and extracellular waveforms. The information provided by MS neurons was sufficient for a race model to decide stimulus familiarity and retrieval confidence. Together, our results indicate a trial-by-trial relationship between a specific group of neurons and declared memory strength in humans. We suggest that VS and MS neurons are a substrate for declarative memories

    Predicting Action Content On-Line and in Real Time before Action Onset — an

    No full text
    The ability to predict action content from neural signals in real time before the action occurs has been long sought in the neuroscientific study of decision-making, agency and volition. On-line real-time (ORT) prediction is important for understanding the relation between neural correlates of decision-making and conscious, voluntary action as well as for brain-machine interfaces. Here, epilepsy patients, implanted with intracranial depth microelectrodes or subdural grid electrodes for clinical purposes, participated in a “matching-pennies ” game against an opponent. In each trial, subjects were given a 5 s countdown, after which they had to raise their left or right hand immediately as the “go ” signal appeared on a computer screen. They won a fixed amount of money if they raised a different hand than their opponent and lost that amount otherwise. The question we here studied was the extent to which neural precursors of the subjects ’ decisions can be detected in intracranial local field potentials (LFP) prior to the onset of the action. We found that combined low-frequency (0.1–5 Hz) LFP signals from 10 electrode

    Representation of retrieval confidence by single neurons in the human medial temporal lobe

    No full text
    Memory-based decisions are often accompanied by an assessment of choice certainty, but the mechanisms of such confidence judgments remain unknown. We studied the response of 1,065 individual neurons in the human hippocampus and amygdala while neurosurgical patients made memory retrieval decisions together with a confidence judgment. Combining behavioral, neuronal and computational analysis, we identified a population of memory-selective (MS) neurons whose activity signaled stimulus familiarity and confidence, as assessed by subjective report. In contrast, the activity of visually selective (VS) neurons was not sensitive to memory strength. The groups further differed in response latency, tuning and extracellular waveforms. The information provided by MS neurons was sufficient for a race model to decide stimulus familiarity and retrieval confidence. Together, our results indicate a trial-by-trial relationship between a specific group of neurons and declared memory strength in humans. We suggest that VS and MS neurons are a substrate for declarative memories
    corecore