1,136 research outputs found

    Quantum Efficiency of Charge Qubit Measurements Using a Single Electron Transistor

    Full text link
    The quantum efficiency, which characterizes the quality of information gain against information loss, is an important figure of merit for any realistic quantum detectors in the gradual process of collapsing the state being measured. In this work we consider the problem of solid-state charge qubit measurements with a single-electron-transistor (SET). We analyze two models: one corresponds to a strong response SET, and the other is a tunable one in response strength. We find that the response strength would essentially bound the quantum efficiency, making the detector non-quantum-limited. Quantum limited measurements, however, can be achieved in the limits of strong response and asymmetric tunneling. The present study is also associated with appropriate justifications for the measurement and backaction-dephasing rates, which were usually evaluated in controversial methods.Comment: 10 pages, 2 figure

    A minimum single-band model for low-energy excitations in superconducting Kx_xFe2_2Se2_2

    Get PDF
    We propose a minimum single-band model for the newly discovered iron-based superconducting Kx_xFe2_2Se2_2. Our model is found to be numerically consistent with the five-orbital model at low energies. Based on our model and the random phase approximation, we study the spin fluctuation and the pairing symmetry of superconducting gap function. The (π/2,π/2)(\pi/2,\pi/2) spin excitation and the dx2y2d_{x^2-y^2} pairing symmetry are revealed. All of the results can well be understood in terms of the interplay between the Fermi surface topology and the local spin interaction, providing a sound picture to explain why the superconducting transition temperature is as high as to be comparable to those in pnictides and some cuprates. A common origin of superconductivity is elucidated for this compound and other high-Tc_c materials.Comment: 5 pages, 4 figure

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for α1\alpha\ll 1 the Drude theory applies, at α1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near ν=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    Stabilization and pumping of giant vortices in dilute Bose-Einstein condensates

    Full text link
    Recently, it was shown that giant vortices with arbitrarily large quantum numbers can possibly be created in dilute Bose-Einstein condensates by cyclically pumping vorticity into the condensate. However, multiply quantized vortices are typically dynamically unstable in harmonically trapped nonrotated condensates, which poses a serious challenge to the vortex pump procedure. In this theoretical study, we investigate how the giant vortices can be stabilized by the application of a Gaussian potential peak along the vortex core. We find that achieving dynamical stability is feasible up to high quantum numbers. To demonstrate the efficiency of the stabilization method, we simulate the adiabatic creation of an unsplit 20-quantum vortex with the vortex pump.Comment: 8 pages, 6 figures; to be published in J. Low Temp. Phys., online publication available at http://dx.doi.org/10.1007/s10909-010-0216-

    Rotational master equation for cold laser-driven molecules

    Full text link
    The equations of motion for the molecular rotation are derived for vibrationally cold dimers that are polarized by off-resonant laser light. It is shown that, by eliminating electronic and vibrational degrees of freedom, a quantum master equation for the reduced rotational density operator can be obtained. The coherent rotational dynamics is caused by stimulated Raman transitions, whereas spontaneous Raman transitions lead to decoherence in the motion of the quantized angular momentum. As an example the molecular dynamics for the optical Kerr effect is chosen, revealing decoherence and heating of the molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability

    Get PDF
    Bacteria possess physicochemical surface properties such as hydrophobicity, Lewis acid/base and charge which are involved in physicochemical interactions between cells and interfaces. Moreover, food matrices are complex and heterogeneous media, with a microstructure depending on interactions between the components in media (van der Waals, electrostatic or structural forces, etc.). Despite the presence of bacteria in fermented products, few works have investigated how bacteria interact with other food components. The objective of the present study was to determine the effects of the surface properties of lactic acid bacteria on the stability of model food emulsions. The bacteria were added to oil/water emulsions stabilized by milk proteins (sodium caseinate, whey proteins concentrate or whey proteins isolate) at different pH (from 3 to 7.5). The effect of bacteria on the emulsions stability depended on the surface properties of strains and also on the characteristics of emulsions. Flocculation and aggregation phenomena were observed in emulsion at pHs for which the bacterial surface charge was opposed to the one of the proteins. The effects of bacteria on the stability of emulsion depended also on the concentration of cations present in media such as Ca2+. These results show that the bacteria through their surface properties could interact with other compounds in matrices, consequently affecting the stability of emulsions. The knowledge and choice of bacteria depending on their surface properties could be one of the important factors to control the stability of matrices such as fermentation media or fermented products.Région Bourgogne, Agence Universitaire de la Francophonie

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore