10 research outputs found

    Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice

    Get PDF
    Soil salinization has a serious influence on rice yield and quality. How to enhance salt tolerance in rice is a topical issue. In this study, 120 recombinant inbred line populations were generated through nonstop multi-generation selfing using a male indica rice variety Huazhan (Oryza sativa L. subsp. indica cv. ‘HZ’) and a female variety of Nekken2 (Oryza sativa L. subsp. japonica cv. ‘Nekken2’) as the parents. Germination under 80 mM NaCl conditions was measured and analyzed, and quantitative trait locus (QTL) mapping was completed using a genetic map. A total of 16 salt-tolerance QTL ranges were detected at bud stage in rice, which were situated on chromosomes 3, 4, 6, 8, 9, 10, 11, and 12. The maximum limit of detection was 4.69. Moreover, the qST12.3 was narrowed to a 192 kb region on chromosome 12 using map-based cloning strategy. Statistical analysis of the expression levels of these candidate genes under different NaCl concentrations by qRT-PCR revealed that qST12.3 (LOC_Os12g25200) was significantly down-regulated with increasing NaCl concentration, and the expression level of the chlorine-transporter-encoding gene LOC_Os12g25200 in HZ was significantly higher than that of Nekken2 under 0 mM NaCl. Sequencing analysis of LOC_Os12g25200 promoter region indicated that the gene expression difference between parents may be due to eight base differences in the promoter region. Through QTL mining and analysis, a plurality of candidate genes related to salt tolerance in rice was obtained, and the results showed that LOC_Os12g25200 might negatively regulate salt tolerance in rice. The results provide the basis for further screening and cultivation of salt-tolerant rice varieties and have laid the foundation for elucidating further molecular regulation mechanisms of salt tolerance in rice

    Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pppp Collisions at s=13\sqrt{s}=13 TeV

    No full text
    A poster about a search for heavy neutral Higgs bosons performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139~fb1^{-1} of proton-proton collisions at s=13\sqrt{s}=13 TeV recorded with ATLAS detector. The heavy resonance search is performed over the mass range 0.2-2.5 TeV for the τ+τ\tau^{+}\tau^{-} decay where at least one τ\tau-lepton decaying into handronical final states. The data is in good agreement with the standard model predictions. Results are interpreted in terms of several scenarios of the MSSM as well

    Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector using pp{\rm pp} Collisions at s=13\sqrt{{\rm s}}=13 TeV

    No full text
    A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb1^{-1} of proton-proton collisions at s=13\sqrt{s}=13 TeV recorded by the ATLAS detector. The heavy resonance search is performed over the mass range 0.2-2.5 TeV in the τ+τ\tau^{+}\tau^{-} decay with at least one τ\tau-lepton decaying into handronical final states. The data are in good agreement with the Standard Model predictions. Results are interpreted in terms of several MSSM scenarios

    Searches for additional Higgs bosons in ATLAS

    No full text
    The discovery of the Higgs boson with the mass of about 125 GeV completed the particle content predicted by the Standard Model. Even though this model is well established and consistent with many measurements, it is not capable to solely explain some observations. Many extensions of the Standard Model addressing such shortcomings introduce additional Higgs-like bosons which can be either neutral, singly-charged or even doubly-charged. The current status of searches based on the full LHC Run 2 dataset of the ATLAS experiment at 13 TeV are presented

    Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at s\sqrt{s} = 13 TeV

    No full text
    A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb1^{-1} of proton-proton collisions at s=13\sqrt{s}=13 TeV recorded by the ATLAS detector. The heavy resonance search is performed over the mass range 0.2-2.5~TeV for the τ+τ\tau^{+}\tau^{-} decay with at least one τ\tau-lepton decaying into handronic final states. The data is in good agreement with the standard model predictions. Results are interpreted in terms of several Minimum Supersymmetry Standard Model scenarios

    Molecular classification of small cell lung cancer subtypes: Characteristics, prognostic factors, and clinical translation

    No full text
    Abstract. Small cell lung cancer (SCLC) is a highly malignant tumor with a very poor prognosis; therefore, more effective treatments are urgently needed for patients afflicted with the disease. In recent years, emerging molecular classifications based on key transcription factors of SCLC have provided more information on the tumor pathophysiology, metastasis, immune microenvironment, and acquired therapeutic resistance and reflected the intertumoral heterogeneity of the various SCLC phenotypes. Additionally, advances in genomics and single-cell sequencing analysis have further revealed the high intratumoral heterogeneity and plasticity of the disease. Herein, we review and summarize these recent lines of evidence and discuss the possible pathogenesis of SCLC

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore