1,839 research outputs found

    From firm-controlled to consumer-contributed: consumer co-production of personal media marketing communication

    Get PDF
    Fueled by the sociocultural shift from firm-controlled to consumer-contributed media, the researchers explore the idea of adapting a co-production strategy from service marketing to marketing communication sent to personal media. Eleven field experiments with firms, along with a structural model tested on survey data, provide empirical evidence supporting a co-production approach applied as a communication strategy in the context of a text message mobile coupon marketing campaign. The results demonstrate a co-produced direct marketing communication strategy that increases attitude toward the communication, purchase intent, and purchase activity, while also acting as a risk-reducing mechanism. Furthermore, perceived customization of the communication interacts strongly with risk perception and marginally with coupon proneness as related to attitude toward the communication when marketers enter the world of consumers' personal media. A push versus pull framework and a co-produced communication framework are put forth to suggest various areas marketers can make available for consumers to co-produce in a marketing communication exchange

    Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: study protocol for an international multicenter randomized controlled trial (PROMISE study)

    Get PDF
    Background: Although results of case series support the use of spinal cord stimulation in failed back surgery syndrome patients with predominant low back pain, no confirmatory randomized controlled trial has been undertaken in this patient group to date. PROMISE is a multicenter, prospective, randomized, open-label, parallel-group study designed to compare the clinical effectiveness of spinal cord stimulation plus optimal medical management with optimal medical management alone in patients with failed back surgery syndrome and predominant low back pain. Method/Design: Patients will be recruited in approximately 30 centers across Canada, Europe, and the United States. Eligible patients with low back pain exceeding leg pain and an average Numeric Pain Rating Scale score >= 5 for low back pain will be randomized 1:1 to spinal cord stimulation plus optimal medical management or to optimal medical management alone. The investigators will tailor individual optimal medical management treatment plans to their patients. Excluded from study treatments are intrathecal drug delivery, peripheral nerve stimulation, back surgery related to the original back pain complaint, and experimental therapies. Patients randomized to the spinal cord stimulation group will undergo trial stimulation, and if they achieve adequate low back pain relief a neurostimulation system using the Specify (R) 5-6-5 multi-column lead (Medtronic Inc., Minneapolis, MN, USA) will be implanted to capture low back pain preferentially in these patients. Outcome assessment will occur at baseline (pre-randomization) and at 1, 3, 6, 9, 12, 18, and 24 months post randomization. After the 6-month visit, patients can change treatment to that received by the other randomized group. The primary outcome is the proportion of patients with >= 50% reduction in low back pain at the 6-month visit. Additional outcomes include changes in low back and leg pain, functional disability, health-related quality of life, return to work, healthcare utilization including medication usage, and patient satisfaction. Data on adverse events will be collected. The primary analysis will follow the intention-to-treat principle. Healthcare use data will be used to assess costs and long-term cost-effectiveness. Discussion: Recruitment began in January 2013 and will continue until 2016

    Imaging genome abnormalities in cancer research

    Get PDF
    Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments

    Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation

    Get PDF
    Mitotic cell death is an important form of cell death, particularly in cancer. Chromosome fragmentation is a major form of mitotic cell death which is identifiable during common cytogenetic analysis by its unique phenotype of progressively degraded chromosomes. This morphology however, can appear similar to the morphology of premature chromosome condensation (PCC) and thus, PCC has been at times confused with chromosome fragmentation. In this analysis the phenomena of chromosome fragmentation and PCC are reviewed and their similarities and differences are discussed in order to facilitate differentiation of the similar morphologies. Furthermore, chromosome pulverization, which has been used almost synonymously with PCC, is re-examined. Interestingly, many past reports of chromosome pulverization are identified here as chromosome fragmentation and not PCC. These reports describe broad ranging mechanisms of pulverization induction and agree with recent evidence showing chromosome fragmentation is a cellular response to stress. Finally, biological aspects of chromosome fragmentation are discussed, including its application as one form of non-clonal chromosome aberration (NCCA), the driving force of cancer evolution

    Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems

    Full text link
    Abstract Background In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Results Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Conclusion Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.https://deepblue.lib.umich.edu/bitstream/2027.42/143540/1/13039_2018_Article_376.pd

    Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer.

    Get PDF
    Cancer progression represents an evolutionary process where overall genome level changes reflect system instability and serve as a driving force for evolving new systems. To illustrate this principle it must be demonstrated that karyotypic heterogeneity (population diversity) directly contributes to tumorigenicity. Five well characterized in vitro tumor progression models representing various types of cancers were selected for such an analysis. The tumorigenicity of each model has been linked to different molecular pathways, and there is no common molecular mechanism shared among them. According to our hypothesis that genome level heterogeneity is a key to cancer evolution, we expect to reveal that the common link of tumorigenicity between these diverse models is elevated genome diversity. Spectral karyotyping (SKY) was used to compare the degree of karyotypic heterogeneity displayed in various sublines of these five models. The cell population diversity was determined by scoring type and frequencies of clonal and non-clonal chromosome aberrations (CCAs and NCCAs). The tumorigenicity of these models has been separately analyzed. As expected, the highest level of NCCAs was detected coupled with the strongest tumorigenicity among all models analyzed. The karyotypic heterogeneity of both benign hyperplastic lesions and premalignant dysplastic tissues were further analyzed to support this conclusion. This common link between elevated NCCAs and increased tumorigenicity suggests an evolutionary causative relationship between system instability, population diversity, and cancer evolution. This study reconciles the difference between evolutionary and molecular mechanisms of cancer and suggests that NCCAs can serve as a biomarker to monitor the probability of cancer progression

    Evolution of Fields in a Second Order Phase Transition

    Get PDF
    We analyse the evolution of scalar and gauge fields during a second order phase transition using a Langevin equation approach. We show that topological defects formed during the phase transition are stable to thermal fluctuations. Our method allows the field evolution to be followed throughout the phase transition, for both expanding and non-expanding Universes. The results verify the Kibble mechanism for defect formation during phase transitions.Comment: 12 pages of text plus 17 diagrams available on request, DAMTP 94-8

    X-ray Structure of Gelatinase A Catalytic Domain Complexed with a Hydroxamate Inhibitor

    Get PDF
    Gelatinase A is a key enzyme in the family of matrix metalloproteinases (matrixins) that are involved in the degradation of the extracellular matrix. As this process is an integral part of tumour cell metastasis and angiogenesis, gelatinase is an important target for therapeutic intervention. The X-ray crystal structure of the gelatinase A catalytic domain (GaCD) complexed with batimastat (BB94), a hydroxamate inhibitor, shows an active site with a large S1\u27 specificity pocket. The structure is similar to previously solved structures of stromelysin catalytic domain (SCD) but with differences in VR1 and VR2, two surface-exposed loops on either side of the entrance to the active site. Comparison of GaCD with other members of the matrix metalloproteinase (MMP) family highlights the conservation of key secondary structural elements and the significant differences in the specificity pockets, knowledge of which should enhance our ability to design specific inhibitors for this important anticancer target

    X-ray Structure of Gelatinase A Catalytic Domain Complexed with a Hydroxamate Inhibitor

    Get PDF
    Gelatinase A is a key enzyme in the family of matrix metalloproteinases (matrixins) that are involved in the degradation of the extracellular matrix. As this process is an integral part of tumour cell metastasis and angiogenesis, gelatinase is an important target for therapeutic intervention. The X-ray crystal structure of the gelatinase A catalytic domain (GaCD) complexed with batimastat (BB94), a hydroxamate inhibitor, shows an active site with a large S1\u27 specificity pocket. The structure is similar to previously solved structures of stromelysin catalytic domain (SCD) but with differences in VR1 and VR2, two surface-exposed loops on either side of the entrance to the active site. Comparison of GaCD with other members of the matrix metalloproteinase (MMP) family highlights the conservation of key secondary structural elements and the significant differences in the specificity pockets, knowledge of which should enhance our ability to design specific inhibitors for this important anticancer target
    corecore