29 research outputs found
Frequency stability characterization of a broadband fiber Fabry-Perot interferometer
An optical etalon illuminated by a white light source provides a broadband
comb-like spectrum that can be employed as a calibration source for
astronomical spectrographs in radial velocity (RV) surveys for extrasolar
planets. For this application the frequency stability of the etalon is
critical, as its transmission spectrum is susceptible to frequency fluctuations
due to changes in cavity temperature, optical power and input polarization. In
this paper we present a laser frequency comb measurement technique to
characterize the frequency stability of a custom-designed fiber Fabry-Perot
interferometer (FFP). Simultaneously probing the stability of two etalon
resonance modes, we assess both the absolute stability of the etalon and the
long-term stability of the cavity dispersion. We measure mode positions with
MHz precision, which corresponds to splitting the FFP resonances by a part in
500 and to RV precision of ~1 m/s. We address limiting systematic effects,
including the presence of parasitic etalons, that need to be overcome to push
the metrology of this system to the equivalent RV precision of 10 cm/s. Our
results demonstrate a means to characterize environmentally-driven
perturbations of etalon resonance modes across broad spectral bandwidths, as
well as motivate the benefits and challenges of FFPs as spectrograph
calibrators.Comment: 15 pages, 9 figures, accepted to Opt. Expres
Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy
Mid-infrared femtosecond optical frequency combs were produced by difference
frequency generation of the spectral components of a near-infrared comb in a
3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB
parametric gain in the 1.5 \mu m signal, which yields powers above 500 mW (3
\mu W/mode) in the idler with spectra covering 2.8 \mu m to 3.5 \mu m.
Potential for broadband, high-resolution molecular spectroscopy is demonstrated
by absorption spectra and interferograms obtained by heterodyning two combs.Comment: 11 pages, 8 figure
A near infrared frequency comb for Y+J band astronomical spectroscopy
Radial velocity (RV) surveys supported by high precision wavelength
references (notably ThAr lamps and I2 cells) have successfully identified
hundreds of exoplanets; however, as the search for exoplanets moves to cooler,
lower mass stars, the optimum wave band for observation for these objects moves
into the near infrared (NIR) and new wavelength standards are required. To
address this need we are following up our successful deployment of an H
band(1.45-1.7{\mu}m) laser frequency comb based wavelength reference with a
comb working in the Y and J bands (0.98-1.3{\mu}m). This comb will be optimized
for use with a 50,000 resolution NIR spectrograph such as the Penn State
Habitable Zone Planet Finder. We present design and performance details of the
current Y+J band comb.Comment: Submitted to SPIE, conference proceedings 845
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology
Near field modal noise reduction using annealed optical fiber
Incomplete and unstable mode population has long complicated the application of optical fiber for transferring star and calibration light to high precision spectrographs. The need for improved precision calibrators in support of radial velocity planet surveys has led to the introduction of coherent wavelengths sources using single mode fibers that are then coupled into multi-mode fibers, further exacerbating this problem. We explore mode scrambling in annealed optical fiber with and without agitation, as compared to that obtained using octagonal fiber and using an integrating sphere. We observe improved scrambling with annealed fibers compared to conventional and octagonal fibers