11 research outputs found

    Anisotropy of infrared-active phonon modes in the monodomain state of tetragonal SrTiO3{\mathrm{SrTiO}}_{3} (110)

    Get PDF
    With infrared (IR) and terahertz (THz) ellipsometry we investigated the anisotropy of the IR-active phonon modes in SrTiO3{\mathrm{SrTiO}}_{3} (110) single crystals in the tetragonal state below the so-called antiferrodistortive transition at T∗=105 K. In particular, we show that the anisotropy of the oscillator strength of the so-called R mode, which becomes weakly IR active below T∗, is a valuable indicator of the orientation of the structural domains. Our results reveal that a monodomain state with the tetragonal axis (c axis) parallel to the [001] direction can be created by applying a moderate uniaxial stress of about 2.3 MPa along the [1-10] direction (with a simple mechanical clamp). The resulting splitting of the IR-active phonon modes is reported

    Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO<sub></sub> films

    Get PDF
    We present a combined study with time-domain terahertz and conventional far-infrared ellipsometry of the temperature dependent optical response of SrTiO₃thin films (82 and 8.5 nm) that are grown by pulsed-laser deposition on (La0.3Sr0.7) (Al0.65Ta0.35)O₃ (LSAT) substrates. We demonstrate that terahertz ellipsometry is very sensitive to the optical response of these thin films, in particular, to the soft mode of SrTiO₃. We show that for the 82 nm film the eigenfrequency of the soft mode is strongly reduced by annealing at 1200 °C, whereas for the 8.5 nm film it is hardly affected. For the latter, after annealing the mode remains at 125 cm⁻¹ at 300 K and exhibits only a weak softening to about 90 cm⁻¹ at 10 K. This suggests that this ultrathin film undergoes hardly any relaxation of the compressive strain due to the LSAT substrate

    Anomalous anisotropic exciton temperature dependence in rutile TiO2{\mathrm{TiO}}_{2}

    Get PDF
    Elucidating the details of electron-phonon coupling in semiconductors and insulators is a topic of pivotal interest, as it governs the transport mechanisms and is responsible for various phenomena such as spectral-weight transfers to phonon sidebands and self-trapping. Here, we investigate the influence of the electron-phonon interaction on the excitonic peaks of rutile TiO2, revealing a strong anisotropic polarization dependence with increasing temperature, namely, an anomalous blue shift for light polarized along the a axis and a conventional red shift for light polarized along the c axis. By employing many-body perturbation theory, we identify two terms in the electron-phonon interaction Hamiltonian that contribute to the anomalous blue shift of the a-axis exciton. Our approach paves the way to a complete ab initio treatment of the electron-phonon interaction and of its influence on the optical spectra of polar materials

    Infrared ellipsometry study of the confined electrons in a high-mobility <i>γ</i>-Al₂O₃/SrTiO₃ heterostructure

    Get PDF
    With infrared ellipsometry we studied the response of the confined electrons in γ-Al₂O₃/SrTiO₃ (GAO/STO) heterostructures in which they originate predominantly from oxygen vacancies. From the analysis of a so-called Berreman mode, that develops near the highest longitudinal optical phonon mode of SrTiO₃, we derive the sheet carrier density, N s , the mobility, μ, and the depth profile of the carrier concentration. Notably, we find that N s and the shape of the depth profile are similar as in LaAlO₃/SrTiO₃ (LAO/STO) heterostructures for which the itinerant carriers are believed to arise from a polar discontinuity. Despite an order of magnitude higher mobility in GAO/STO, as obtained from transport measurements, the derived mobility in the infrared range exhibits only a twofold increase. We interpret this finding in terms of the polaronic nature of the confined charge carriers in GAO/STO and LAO/STO which leads to a strong, frequency-dependent interaction with the STO phonons

    Muon spin rotation and infrared spectroscopy study of magnetism and superconductivity in {\mathrm{Ba}}_{1\ensuremath{-}x}{\mathrm{K}}_{x}{\mathrm{Fe}}_{2}{\mathrm{As}}_{2}

    Get PDF
    Using muon spin rotation and infrared spectroscopy, we study the relation between magnetism and superconductivity in Ba1−xKxFe2As2 single crystals from the underdoped to the slightly overdoped regime. We find that the Fe magnetic moment is only moderately suppressed in most of the underdoped region where it decreases more slowly than the Néel temperature TN. This applies for both the total Fe moment obtained from muon spin rotation and for the itinerant component that is deduced from the spectral weight of the spin-density-wave pair-breaking peak in the infrared response. In the moderately underdoped region, superconducting and static magnetic orders coexist on the nanoscale and compete for the same electronic states. The static magnetic moment disappears rather sharply near optimal doping, however, in the slightly overdoped region there is still an enhancement or slowing down of spin fluctuations in the superconducting state. Similar to the gap magnitude reported from specific-heat measurements, the superconducting condensate density is nearly constant in the optimally and slightly overdoped region, but exhibits a rather pronounced decrease on the underdoped side. Several of these observations are similar to the phenomenology in the electron-doped counterpart Ba(Fe1−yCoy)2As2

    Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3\mathrm{SrTi}{\mathrm{O}}_{3} crystals and at the interface of the corresponding LaAlO3/SrTiO3\mathrm{LaAl}{\mathrm{O}}_{3}/\mathrm{SrTi}{\mathrm{O}}_{3} heterostructures

    Get PDF
    With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T∗=105K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface

    Non-collinear and asymmetric polar moments at back-gated SrTiO<inf>3</inf> interfaces

    Get PDF
    The mechanism of the gate-field-induced metal-to-insulator transition of the electrons at the interface of SrTiO3 with LaAlO3 or AlOx is of great current interest. Here, we show with infrared ellipsometry and confocal Raman spectroscopy that an important role is played by a polar lattice distortion that is non-collinear, highly asymmetric and hysteretic with respect to the gate field. The anomalous behavior and the large lateral component of the underlying local electric field is explained in terms of the interplay between the oxygen vacancies, that tend to migrate and form extended clusters at the antiferrodistortive domain boundaries, and the interfacial electrons, which get trapped/detrapped at the oxygen vacancy clusters under a positive/negative gate bias. Our findings open new perspectives for the defect engineering of lateral devices with strongly enhanced and hysteretic local electric fields that can be manipulated with various parameters, like strain, temperature, or photons.F.L. and C.B. acknowledge enlightening discussions with S. Das, J. Maier, R. Merkle, A. Dubroka, and B. I. Shklovskii. Work at the University of Fribourg was supported by the Schweizerische Nationalfonds (SNF) by Grant No. 200020-172611. M.B. acknowledges support from the ERC Advanced grant n° 833973 “FRESCO” and the QUANTERA project “QUANTOX”. G.H. acknowledges financial support from Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) through the Severo Ochoa FUNFUTURE (CEX2019-000917-S) and Grant No. PID2020-118479RB-I00, and Generalitat de Catalunya (2017 400 SGR 1377).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Anomalous anisotropic exciton temperature dependence in rutile TiO2

    No full text
    Elucidating the details of electron-phonon coupling in semiconductors and insulators is a topic of pivotal interest, as it governs the transport mechanisms and is responsible for various phenomena such as spectral-weight transfers to phonon sidebands and self-trapping. Here, we investigate the influence of the electron-phonon interaction on the excitonic peaks of rutile TiO2, revealing a strong anisotropic polarization dependence with increasing temperature, namely, an anomalous blue shift for light polarized along the a axis and a conventional red shift for light polarized along the c axis. By employing many-body perturbation theory, we identify two terms in the electron-phonon interaction Hamiltonian that contribute to the anomalous blue shift of the a-axis exciton. Our approach paves the way to a complete ab initio treatment of the electron-phonon interaction and of its influence on the optical spectra of polar materials
    corecore