153 research outputs found

    Mating type idiomorphs of Pyrenophora teres in Turkey

    Get PDF
    Pyrenophora teres f. maculata (Ptm) and Pyrenophora teres f. teres (Ptt) causes spot form and net form of net blotch diseases of barley, respectively. Although both forms of P. teres are morphologically similar, their symptoms and genetic background differ. In this study, 175 single spore (109 Ptm and 66 Ptt) isolates obtained from different regions of Turkey were evaluated for their mating type distribution and prevalence. Fungal isolates of both forms were verified using species-speci.c polymerase chain reaction (PCR) primers. For mating type determination studies, duplex PCR was performed using MAT-specific single nucleotide polymorphism primers. Sixty and 49 of 109 Ptm isolates were found as MAT1-1 and MAT1-2 types, respectively and 43 and 23 of 66 Ptt isolates were found as MAT1-1 and MAT1-2 types, respectively. These results show the possibility of sexual reproduction among the Ptm isolates in Turkey and Ptt population of Central Anatolia, Turkey. However, the overall pattern of Ptt isolates did not support the sexual reproduction hypothesis in Turkey. Sexual reproduction in the life cycle of P. teres is important since it could lead to genetic and pathogenic variation. As a result of new sexual combinations more virulent pathotypes of P. teres may occur

    Influence of the gut microbiome on IgE and non-IgE-mediated food allergies

    Get PDF
    Congress of the European-Academy-of-Allergy-and-Clinical-Immunology (EAACI) -- MAY 26-30, 2018 -- Munich, GERMANYWOS: 000441690400204Background: The prevalence of food allergy (FA) in children has been increasing in last decade. Recent studies show changes in gut microbiome with FA. However, whether gut microbiome may differ between IgE and non‐IgE‐mediated FA is not defined. The aim of this study is to examine the intestinal microbiome composition in infants with IgE and non‐IgE‐mediated FA and healthy infants. Method: Infants younger than 1‐year‐old, breastfed and diagnosed with FA by a physician were included in the study. DNA was isolated from stool samples of infants with non‐IgE‐mediated FA (n = 25) and IgE‐mediated FA (n = 11) and healthy infants (n = 7). Whole genome shotgun sequencing was applied to identify the composition of microbial DNA (an average depth of 3.1 ± 0.8 million paired end reads and 0.9 ± 0.2 gigabase pairs). Results: There were compositional differences among 3 different groups. Shannon index was significantly higher in IgE‐mediated FA compared to non‐IgE‐mediated FA group (Kruskal‐Wallis test, P = 0.034). Even though ÎČ‐diversity was similar, the Sparse Partial Least Square Discriminant Analysis (sPLS‐DA) demonstrated that there were taxa‐level differences among three groups. In species level, Veillonella parvula was in a significantly higher density in healthy infants compared to IgE and non‐IgE‐mediated FA groups. Rahnella aquatilis and Lactobacillus salivarius were significantly lower and Treponema succinifaciens significantly higher in IgE‐mediated FA group compared to other groups. Additionally, Prevotella sp. oral taxon 299 was significantly lower in non‐IgE‐mediated FA group compared to others. Prevotella sp oral taxon 299 was related to mucus in stool whereas urticaria related species were Olsenall uli, Bactreoides thetaiotaomicron, Klebsiella variiocola, Rahnella aquatilis, Treponema succinfaciens, Ethanoligenens harbinenese. Conclusion: Analysis of microbiome differences in FA patients may aid in the understanding of the disease process. The present data suggest that there are compositional variations mostly in species‐ level among infants with FA and healthy ones. Our results suggest that the gut microbiome has a stronger relationship to IgE‐mediated than non‐IgE‐mediated FA. Further functional analysis of the microbiome may help better understand the changes seen in the gut microbiome in FAs and improve our knowledge in the disease etiopathology.European Academy of Allergy and Clinical Immunolog

    METIS research advances towards the 5G mobile and wireless system definition

    Get PDF
    [EN] The Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) project is laying the foundations of Fifth Generation (5G) mobile and wireless communication system putting together the point of view of vendors, operators, vertical players, and academia. METIS envisions a 5G system concept that efficiently integrates new applications developed in the METIS horizontal topics and evolved versions of existing services and systems. This article provides a first view on the METIS system concept, highlights the main features including architecture, and addresses the challenges while discussing perspectives for the further research work.Part of this work has been performed in the framework of the FP7 project ICT-317669 METIS, which is partly funded by the European Commission. The authors would like to acknowledge the contributions of their colleagues in METIS with special thanks to Petar Popovski, Peter Fertl, David Gozalvez-Serrano, Andreas Hoglund, Zexian Li, and Krystian Pawlak. Also thanks to Josef Eichinger and Malte Schellmann for the fruitful discussions during the revision of this article.Monserrat Del RĂ­o, JF.; Mange, G.; Braun, V.; Tullberg, H.; Zimmermann, G.; Bulakci, O. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking. 2015(53):1-16. https://doi.org/10.1186/s13638-015-0302-9S116201553Cisco, in Global Mobile Data Traffic Forecast Update, 2014–2019 White Paper, February 2015. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdfMETIS, in Mobile and wireless communications Enablers for the Twenty-twenty Information Society, EU 7th Framework Programme project, http://www.metis2020.com .ICT-317669 METIS project, in Scenarios, requirements and KPIs for 5G mobile and wireless system, Deliverable D1.1, May 2013, https://www.metis2020.com/documents/deliverables/B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, B Ohlman, A survey of information-centric networking. IEEE Commun Mag 50(7), 26–36 (2012)A Osseiran, F Boccardi, V Braun, K Kusume, P Marsch, M Maternia, O Queseth, M Schellmann, H Schotten, H Taoka, H Tullberg, MA Uusitalo, B Timus, M Fallgren, Scenarios for the 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5), 26–35 (2014)D Gomez-Barquero, D Calabuig, JF Monserrat, N Garcia and J Perez-Romero, Hopfield neural network - based approach for joint dynamic resource allocation in heterogeneous wireless networks, in Proceedings 64th IEEE Vehicular Technology Conference (VTC), Montreal. 2006JF Monserrat, P Sroka, G Auer, J Cabrejas, D Martin-Sacristan, A Mihovska, R Rossi, A. Saul, R. Schoenen, Advanced Radio Resource Management for IMT-Advanced in WINNER+ (II), in Proc. Future Network and Mobile Summit, pp.1-9, June 2010.F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE Commun Mag 52(2), 74–80 (2014)JG Andrews, S Buzzi, C Wan, SV Hanly, A Lozano, ACK Soong, JC Zhang, What will 5G be? IEEE J Sel Area Comm 32(6), 1065–1082 (2014)MN Tehrani, M Uysal, H Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag 52(5), 86–92 (2014)N Bhushan, L Junyi, D Malladi, R Gilmore, D Brenner, A Damnjanovic, R Sukhavasi, C Patel, S Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52(2), 82–89 (2014)K Okino, T Nakayama, C Yamazaki, H Sato, Y Kusano, Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks, in Proc. of IEEE International Conference on Communications (ICC), 2011.P Mugen, L Dong, W Yao, L Jian Li, C Hsiao-Hwa, Self-configuration and self-optimization in LTE-advanced heterogeneous networks. IEEE Commun Mag 51(5), 36–45 (2013)I Siomina, D Yuan, Load Balancing in Heterogeneous LTE: Range Optimization via Offset and Load-coupling Characterization, in Proc. of IEEE Int. Conference on Communications (ICC). June 2012.KI Pedersen, Y Wang, B Soret, F Frederiksen, eICIC Functionality and Performance for LTE HetNet Co-Channel Deployments, in Proc. of IEEE Vehicular Technology Conf, Sep 2012X Gu, X Deng, Q Li, L Zhang, W Li, Capacity Analysis and Optimization in Heterogeneous Network with Adaptive Cell Range Control, Int. J. Antennas. Propag. 2014(215803), 10 (2014)K Smiljkovikj, P Popovski, L Gavrilovska, Analysis of the Decoupled Access for DL and UL in Wireless Heterogeneous Networks, in IEEE Wireless Communications Letters, in press, doi:10.1109/LWC.2015.2388676.P Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun Mag 52(11), 65–75 (2014)L Yan, X Fang, Reliability Evaluation of 5G C/U-plane Decoupled Architecture for High-speed Railway. EURASIP J Wirel Commun Netw 2014, 127 (2014)B Zafar, S Gherekhloo, M Haardt, Analysis of multihop relaying networks: communication between range-limited and cooperative nodes. IEEE Veh Technol Mag 7(3), 40–47 (2012)Study on Mobile Relay for Evolved Universal Terrestrial Radio Access (E-UTRA), 3GPP TR 36.836, V2.0.2, July 2013.A Krendzel, LTE-A Mobile Relay Handling: Architecture Aspects, in Proc. of the 19th European Wireless Conference (EW), Guildford, UK, pp. 1–6, 2013.M Khanfouci, Y Sui, A Papadogiannis, and M FĂ€rber, Moving Relays and Mobility aspects, ARTIST4G project deliverable D3.5c-v2.0, 2012.F Haider, M Dianati, and R Tafazolli, A Simulation Based Study of Mobile Femtocell Assisted LTE Networks, in Proc. Of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, pp. 2198–2203, 2011F Haider, W Haiming, H Haas, Y Dongfeng, W Haiming, G Xiqi, Y Xiao-Hu, E Hepsaydir, Spectral efficiency enalysis of mobile Femtocell based cellular systems, in Proc. of the 13th International Conference on Communication Technology (ICCT), Jinan, pp. 347–351, September 2011.ICT-317669 METIS project, Initial report on horizontal topics, first results and 5G system concept, Deliverable D6.2, April 2014, https://www.metis2020.com/documents/deliverables/Study on LTE Device to Device Proximity Services, 3GPP TR 36.843, 2014.V Yazıcı, UC Kozat, M Oguz, Sunay, A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11), 76–85 (2014)F Malandrino, C Casetti, C-F Chiasserini, Toward D2D-enhanced heterogeneous networks. IEEE Commun Mag 52(11), 94–100 (2014)A Asadi, Q Wang, V Mancuso, A survey on device-to-Device communication in cellular networks. IEEE Commun Surv Tutor 16(4), 1801–1819 (2014)D Feng, L Lu, YY Wu, GY Li, G Feng, S Li, Device-to-device communications underlaying cellular networks. IEEE Trans Commun 61(8), 3541–3551 (2013)C Xu, L Song, Z Han, Q Zhao, X Wang, X Cheng, B Jiao, Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach. IEEE J Sel Area Comm 31(9), 348–358 (2013)S Lingyang, D Niyato, H Zhu, E Hossain, Game-theoretic resource allocation methods for device-to-device communication. IEEE Wireless Commun 21(3), 136–144 (2014)G Aloi, M Di Felice, V LoscrĂŹ, P Pace, G Ruggeri, Spontaneous smartphone networks as a user-centric solution for the future internet. IEEE Commun Mag 52(12), 26–33 (2014)PA Frangoudis, GC Polyzos, Security and performance challenges for user-centric wireless networking. IEEE Commun Mag 52(12), 48–55 (2014)ITU-R M.2079, in Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced, 2006AB MacKenzie, LA DaSilva, Application of signal processing to addressing wireless data demand [in the spotlight]. IEEE Signal Process Mag 29(6), 168–166 (2012)X Cheng, Y Koucheryavy, Y Li, F Zhao, T Znati (ed.), Dynamic Spectrum Access for Throughput, Delay, and Fairness Enhancement In Cognitive Radio Networks, EURASIP J Wirel Commun Netw, November 2014MR Akdeniz, Y Liu, MK Samimi, S Sun, S Rangan, TS Rappaport, E Erkip, Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Area Comm 32(6), 1164–1179 (2014)A Adhikary, E Al Safadi, M Samimi, R Wang, G Caire, TS Rappaport, AF Molisch, Joint spatial division and multiplexing for mm-wave channels. IEEE J Sel Area Comm 32(6), 1239–1255 (2014)K Pentikousis, Y Wang, W Hu, Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7), 44–53 (2013)E3 D2.4. Cognitive Function mapping to Networks Architectures, Standard Engineering and Software Technologies for Cognitive Radios, E3 Project Deliverable 2.4, December 2009.R Wang, H Hu, X Yang, Potentials and challenges of C-RAN supporting Multi-RATs toward 5G mobile networks. IEEE. Access. 2(1187), 1195 (2014)V Jungnickel, K Manolakis, W Zirwas, B Panzner, V Braun, M Lossow, M Sternad, R Apelfrojd, T Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag 52(5), 44–51 (2014)E Larsson, O Edfors, F Tufvesson, T Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2), 186–195 (2014)W Roh, S Ji-Yun, P Jeongho, L Byunghwan, L Jaekon, K Yungsoo, C Jaeweon, C Kyungwhoon, F Aryanfar, Millimeter-wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun Mag 2(2), 106–113 (2014)AL Swindlehust, E Ayanoglu, P Heydari, F Capolino, Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 52(9), 56–62 (2014)L Lu, GY Li, AL Swindlehurst, A Ashikhmin, Z Rui, An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process 8(5), 742–758 (2014)S Roger, D Calabuig, J Cabrejas, JF Monserrat, Multi-user non-coherent detection for downlink MIMO communication. IEEE Signal Process Lett 21(10), 1225–1229 (2014)X Wang, M Chen, T Taleb, A Ksentini, V Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52(2), 131–139 (2014)ETSI ISG NFV (Operator Group), Network Functions Virtualisation – Network Operator Perspectives on Industry Progress, Updated White Paper, October 2013NGMN Alliance, in Suggestions on potential solutions for C-RAN, White Paper, January 2013ETSI ISG NFV, Network Functions Virtualisation (NFV); Virtual Network Functions Architecture, v1.1.1, Dec 2014.A Tzanakaki, MP Anastasopoulos, GS Zervas, BR Rofoee, R Nejabati, D Simeonidou, Virtualization of heterogeneous wireless-optical network and IT infrastructures in support of cloud and mobile cloud services. IEEE Commun Mag 51(8), 155–161 (2013)A Manzalini, R Saracco, C Buyukkoc, P Chemuouil, S KukliƄski, A Gladisch, M Fukui, W Shen, M Fujiwara, K Shimano, E Dekel, D Soldani, M Ulema, W Cerroni, F Callegati, G Schembra, V Riccobene, C Mas Machuca, A Galis, J Mueller, Software-Defined Networks for Future Networks and Services: Main Technical Challenges and Business Implications, IEEE Workshop SDN4FNS, 1–16, 2013CEPT ECC, in Licensed Shared Access (LSA), ECC Report 205, February 2014IEEE 802.11, in IEEE 802.11-2012 Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard, March 2012D MartĂ­n-SacristĂĄn, JF Monserrat, J Cabrejas-Peñuelas, D Calabuig, S Garrigas, N Cardona, On the way towards fourth-generation mobile: 3GPP LTE and LTE-Advanced. EURASIP J Wirel Commun Netw 2009, 10 (2009)ICT-317669 METIS, Final report on architecture, Deliverable D6.4, January 2015, https://www.metis2020.com/documents/deliverables/ICT-317669 METIS, Report on simulation results and evaluations, Deliverable D6.5, February 2015, https://www.metis2020.com/documents/deliverables/Ö Bulakci, Z Ren, C Zhou, J Eichinger, P Fertl, S Stanczak, Dynamic Nomadic Node Selection for Performance Enhancement in Composite Fading/Shadowing Environments, (IEEE VTC 2014-Spring, Seoul, South Korea)ICT-317669 METIS, Final report on network-level solutions, Deliverable D4.3 Version 1, February 201

    An index structure for fuzzy databases

    No full text
    Fuzzy querying involves more complex processing than ordinary querying does. In addition, a larger number of tuples will possibly be selected by fuzzy conditions compared to the crisp ones. The current index structures are inefficient in representing and dealing with uncertain and fuzzy data. In this paper we extend one of the multi-dimensional data structures, namely Multi Lever Grid File (Whang and Krishnamurty, 1991) for an efficient access to both crisp and fuzzy data. In order to take advantage of the indexing data structure proposed here, we first partition uncertain data in a way that accessing such data in a database is reasonably efficient. Therefore, we also focus on the issue of preparation of uncertain data before building the access structure. Then we compare the one proposed here with sequential access along with experimental results

    An access structure for similarity-based fuzzy databases

    No full text
    A significant effort has been made in representing imprecise information in database models by using fuzzy set theory. However, the research directed toward access structures to handle fuzzy querying effectively is still at an immature stage. Fuzzy querying involves more complex processing than the ordinary querying does. Additionally, a larger number of tuples are possibly selected by fuzzy conditions in comparison to the crisp ones. It is obvious that the need for fast response time becomes very important when the database system deals with imprecise (fuzzy) data. The current crisp index structures are inappropriate for representing and efficiently accessing fuzzy data. At the same time, in many complex applications such as Expert Database Systems, Multimedia Database Systems, Decision Support Systems, etc., fuzzy queries are usually intermingled with crisp queries. For the effectiveness of fuzzy databases, it is necessary to allow both the non-fuzzy and fuzzy attributes to be indexed together; therefore, a multi-dimensional access structure is required. Beside a suitable access structure, an effective partitioning, representation, and storage of fuzzy data art: also necessary for efficient retrieval. In this study we utilise a multi-dimensional data structure, namely Multi Level Grid File (MLGF), for efficiently accessing both crisp and fuzzy data from fuzzy databases. Therefore, we focus on the issue of partitioning, representation and organisation of fuzzy and crisp data at physical database level, i.e., record and file structures, in addition to the design of the access structure. The implementation of the access structure is also described and its comparison with a previously proposed fuzzy access method is given along with the experimental results. (C) 1999 Elsevier Science Inc. All rights reserved
    • 

    corecore