49 research outputs found

    Research on the association mechanism and evaluation model between fNIRS data and aesthetic quality in product aesthetic quality evaluation

    Get PDF
    Aesthetic quality evaluation has been an important research question in the field of user experience in product design. However, the feasibility and accuracy of using fNIRS data for product aesthetic quality evaluation are unknown. In this paper, we analyze the correlation and association between fNIRS data and aesthetic quality and designed a product aesthetic quality evaluation model to answer this question. We find that HBO2 data in the prefrontal (S19-D11), frontal (S4-D3), temporal (S3-D1), and parietal (S8-D8) regions of the brain have significant correlations and logistic relationships with high visual product aesthetic quality, whereas HBO2 data in the prefrontal (S19-D11) and parietal (S8-D8) regions of the brain have significant correlations and association relationships. These data can be used for products aesthetic quality evaluation. Importantly, the overall prediction accuracy of the model to evaluate products’ aesthetic quality is 84.1%. The model is therefore able to better distinguish and evaluate the aesthetic quality of products. This study demonstrates the feasibility of using fNIRS data to evaluate the aesthetic quality of products and shows that the product aesthetic quality evaluation model can provide an objective and accurate decision-making reference to help designers evaluate and improve the aesthetic quality of products

    The Effect of Myosin Light Chain Kinase on the Occurrence and Development of Intracranial Aneurysm

    Get PDF
    Myosin light chain kinase is a key enzyme in smooth muscle cell contraction. However, whether myosin light chain kinase plays a role in the occurrence or development of intracranial aneurysms is not clear. The present study explored the function of myosin light chain kinase in human intracranial aneurysm tissues. Five aneurysm samples and five control samples were collected, and smooth muscle cells (SMCs) were dissociated and cultured. A label-free proteomic analysis was performed to screen the differentially expressed proteins between aneurysm and control samples. The expression and function of myosin light chain kinase in aneurysms were examined. We found that 180 proteins were differentially expressed between the aneurysm and control samples, among which 88 were increased and 92 (including myosin light chain kinase) were decreased in aneurysms compared to control tissues. In a model of the inflammatory environment, contractility was weakened and apoptosis was increased in aneurysm SMCs compared to human brain SMCs (p < 0.05). The knock down of myosin light chain kinase in human brain SMCs caused effects similar to those observed in aneurysm SMCs. These results indicated that myosin light chain kinase plays an important role in maintaining smooth muscle contractility, cell survival and inflammation tolerance

    Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK

    Get PDF
    Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD(+) levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose

    Two new species of the genus Macrothele Ausserer, 1871 (Araneae, Macrothelidae) from China

    No full text
    The family Macrothelidae Simon, 1892 belongs to the infraorder Mygalomorphae, currently contains two genera and 47 described species, from South Europe, South, and East Southeast Asia, Central, West, and North Africa.Two new species of the funnel-web spider genus Macrothele Ausserer, 1871 from Yunnan Province, China are described: Macrothele washanensis Wu & Yang, sp. n. (♂♀), and M. wuliangensis Wu & Yang, sp. n. (♂♀). Detailed descriptions, diagnostic illustrations and distribution map are provided. All specimens are deposited in the Institute of Entomoceutics Research, Dali University (DUIER)

    Two new species of genus Macrothele (Mygalomorphae, Macrothelidae) from China

    No full text
    The family Macrothelidae Simon, 1892 belongs to the infraorder Mygalomorphae, currently contain two genera and 47 described species from South Europe, Southeast Asia, and Africa.Two new species of the funnel-web spider genus Macrothele Ausserer, 1871 from Yunnan Province, China are described: Macrothele washanensis Wu & Yang, sp. n. (♂♀), and M. wuliangensis Wu & Yang, sp. n. (♂♀). Detailed descriptions, diagnostic illustrations and distribution map are provided. Type specimens are deposited in the Institute of Entomoceutics Research, Dali University (DUIER)

    Genome-Wide Identification and Analyses of Drought/Salt-Responsive Cytochrome P450 Genes in Medicago truncatula

    No full text
    Cytochrome P450 monooxygenases (P450s) catalyze a great number of biochemical reactions and play vital roles in plant growth, development and secondary metabolism. As yet, the genome-scale investigation on P450s is still lacking in the model legume Medicago truncatula. In particular, whether and how many MtP450s are involved in drought and salt stresses for Medicago growth, development and yield remain unclear. In this study, a total of 346 MtP450 genes were identified and classified into 10 clans containing 48 families. Among them, sixty-one MtP450 genes pairs are tandem duplication events and 10 MtP450 genes are segmental duplication events. MtP450 genes within one family exhibit high conservation and specificity in intron-exon structure. Meanwhile, many Mt450 genes displayed tissue-specific expression pattern in various tissues. Specifically, the expression pattern of 204 Mt450 genes under drought/NaCl treatments were analyzed by using the weighted correlation network analysis (WGCNA). Among them, eight genes (CYP72A59v1, CYP74B4, CYP71AU56, CYP81E9, CYP71A31, CYP704G6, CYP76Y14, and CYP78A126), and six genes (CYP83D3, CYP76F70, CYP72A66, CYP76E1, CYP74C12, and CYP94A52) were found to be hub genes under drought/NaCl treatments, respectively. The expression levels of these selected hub genes could be induced, respectively, by drought/NaCl treatments, as validated by qPCR analyses, and most of these genes are involved in the secondary metabolism and fatty acid pathways. The genome-wide identification and co-expression analyses of M. truncatula P450 superfamily genes established a gene atlas for a deep and systematic investigation of P450 genes in M. truncatula, and the selected drought-/salt-responsive genes could be utilized for further functional characterization and molecular breeding for resistance in legume crops

    Circulating IL-17 reduces the risk of cisplatin-induced hearing loss in children: a bidirectional two-sample Mendelian randomization study

    No full text
    Abstract Studies have reported that cytokines and their related signaling pathways play a role in inner ear diseases. In clinical practice, approximately 50% of pediatric cancer patients experience irreversible hearing loss after cisplatin treatment. However, currently, there is a lack of systematic research on the causal relationship between circulating cytokines and cisplatin-induced hearing loss in children. Genetic variant data for 41 circulating cytokines were obtained from a meta-analysis of genome-wide association studies (GWAS) among 8293 individuals of Finnish descent. The GWAS data for Cisplatin-induced hearing loss in children were derived from a multicenter cohort of European pediatric cancer patients and survivors (N = 390), including both cases with hearing loss after cisplatin chemotherapy and controls without hearing loss. Multiple methods were employed for bidirectional Mendelian randomization (MR) estimation. Bonferroni correction was applied to adjust the original P-values, followed by a series of sensitivity analyses. In the directional Mendelian randomization (MR) analysis, it was found that IL-17 was significantly associated with a reduced risk of Cisplatin-induced hearing loss in children (OR: 0.18, CI: 0.06–0.48, P < 0.001, FDR = 0.041). In the reverse MR analysis, there were some nominal causal relationships of Cisplatin-induced hearing loss in children with certain cytokines [M-CSF: (OR: 1.04, CI: 1.01–1.08, P = 0.010, FDR = 0.41); IL-2RA: (OR: 1.03, CI: 1.00–1.05, P = 0.044, FDR = 0.447); MIP-1β: (OR: 1.02, CI: 1.00–1.04, P = 0.041, FDR = 0.447)]. leave-one-out analysis demonstrated that only M-CSF exhibited stability. These findings reveal a causal relationship between IL-17 and cisplatin-induced hearing loss in children. Further research is needed to determine the potential protective mechanisms of IL-17 in cisplatin-induced ototoxicity

    CeO2-M2O3 Passive NOx Adsorbers for Cold Start Applications

    No full text
    Pt/CeO2-M2O3 and Pd/CeO2-M2O3 (M = La, Pr, Y, Sm, or Nd) were prepared by co-precipitation and impregnation and were investigated for potential passive NOx adsorber (PNA) use. During NOx storage at 120 °C, it was found that the amount of NOx stored as a function of time for Pt-promoted materials was higher than the Pd-promoted counterparts. For Pt/CeO2-M2O3 samples doped at the 5% level, NOx storage efficiency (NSE) followed the order Pr > Nd > Sm > Ce (undoped) > Y, La. Increasing dopant content from 5 to 20% decreased NSE in most cases, although in the case of Pr, NSE was increased. During subsequent NOx-temperature-programmed desorption (TPD), two NOx desorption events were apparent in all cases, the first occurring below 350 °C and the second occurring in the range 350–500 °C. Doping with Pr promoted the release of increased amounts of NOx below 350 °C compared to samples doped with other lanthanides; moreover, increasing the content of all doping metals except Pr shifted desorption peaks to higher temperatures, while the opposite trend was observed for Pr. Promotion with Pd was also examined, resulting in an increase of NOx desorption at low temperatures (<350 °C) relative to Pt. These results can be rationalized in terms of the ability of Pr to create vacancies in the CeO2 lattice, which facilitate NOx adsorption, and by the superior NO oxidation activity of Pt relative to Pd, which promotes NOx storage as nitrates possessing high thermal stability.This project was funded by the National Science Foundation and the US Department of Energy (DOE) under award no. CBET-1258742

    Epigenetic identification of mitogen-activated protein kinase 10 as a functional tumor suppressor and clinical significance for hepatocellular carcinoma

    No full text
    Background Mitogen-activated protein kinase 10 (Mapk10) is a member of the c-jun N-terminal kinases (jnk) subgroup in the MAPK superfamily, and was proposed as a tumor suppressor inactivated epigenetically. Its role in hepatocellular carcinoma (HCC) has not yet been illustrated. We aimed to investigate the expression and epigenetic regulation of mapk10 as well as its clinical significance in HCC. Results Mapk10 was expressed in almost all the normal tissues including liver, while we found that the protein expression of MAPK10 was significantly downregulated in clinical samples of HCC patients compared with these levels in adjacent normal tissues (29/46, P < 0.0001). Clinical significance of MAPK10 expression was then assessed in a cohort of 59 HCC cases, which indicated its negative expression was significantly correlated with advanced tumor stage (P = 0.001), more microsatellite nodules (P = 0.025), higher serum AFP (P = 0.001) and shorter overall survival time of HCC patients. Methylation was further detected in 58% of the HCC cell lines we tested and in 66% of primary HCC tissues by methylation-specific PCR (MSP), which was proved to be correlated with the silenced or downregulated expression of mapk10. To get the mechanisms more clear, the transcriptional silencing of mapk10 was reversed by pharmacological demethylation, and ectopic expression of mapk10 in silenced HCC cell lines significantly inhibited the colony formation ability, induced apoptosis, or enhanced the chemosensitivity of HCC cells to 5-fluorouracil. Conclusion Mapk10 appears to be a functional tumor suppressor gene frequently methylated in HCC, which could be a valuable biomarker or a new diagnosis and therapy target in a clinical setting

    Chromosome-scale genome assembly of Lepus oiostolus (Lepus, Leporidae)

    No full text
    Abstract Lepus oiostolus (L. oiostolus) is a species endemic to the Qinghai-Tibet Plateau. However, the absence of a reference genome limits genetic studies. Here, we reported a high-quality L. oiostolus genome assembly, with scaffolds anchored to 24 chromosomes and a total assembled length of 2.80 Gb (contig N50 = 64.25 Mb). Genomic annotation uncovered 22,295 protein-coding genes and identified 49.84% of the sequences as transposable elements. Long interspersed nuclear elements (LINEs) constitute a high proportion of the genome. Our study is at the first time to report the chromosome-scale genome for the species of the L. oiostolus. It provides a valuable genomic resource for future research on the evolution of the Leporidae
    corecore