388 research outputs found

    Process feasibility study in support of silicon material, task 1

    Get PDF
    Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon

    Economics of polysilicon processes

    Get PDF
    Techniques are being developed to provide lower cost polysilicon material for solar cells. Existing technology which normally provides semiconductor industry polysilicon material is undergoing changes and also being used to provide polysilicon material for solar cells. Economics of new and existing technologies are presented for producing polysilicon. The economics are primarily based on the preliminary process design of a plant producing 1,000 metric tons/year of silicon. The polysilicon processes include: Siemen's process (hydrogen reduction of trichlorosilane); Union Carbide process (silane decomposition); and Hemlock Semiconductor process (hydrogen reduction of dichlorosilane). The economics include cost estimates of capital investment and product cost to produce polysilicon via the technology. Sensitivity analysis results are also presented to disclose the effect of major paramentes such as utilities, labor, raw materials and capital investment

    Process feasibility study in support of silicon material task 1

    Get PDF
    Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from 19,094,000to19,094,000 to 11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme

    Process feasibility study in support of silicon material task 1

    Get PDF
    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials
    corecore