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ABSTRACT

During this reporting period, major activities were continued on
process system properties, chemical engineering and economic analyses
for application to alternate processes under consideration for solar
cell grade silicon.

In Task 1, primary efforts were devoted to properties of silicon
source materials. For silane, liquid viscosity data were correlated as •
a function of temperature to cover the entire liquid range. Estimates
for gas and liquid thermal conductivity are reported. Unfortunately,
there are no experimental data available for thermal conductivity of
silane.

Correlation results for silane are also presented for heat and free
energy of formation of the gas as a function of temperature. Both
American and Russian data sources were used in the correlation. Correla-
tion and data values are in good agreement with average deviations being
less than 0.30 kcal/g-mol.

For Task 2, major efforts were devoted to preliminary process design
for the conventional polysilicon process based on the rod reactor (hairpin)
technology. Engineering design calculations for the preliminary process
flowsheet, material balance and energy balance are essentially 100%
complete. Major process equipment design and production labor requirements
are 80% complete. Initial results indicate that the key items are M.G.
silicon and HC1 consumption: high electrical requirements for the rod
reactors; and the large number of major equipment items (62). The criteria
for design were selected to be commensurate with the design basis for the
alternate processes to produce solar cell grade silicon.

Chemical engineering analysis activities in Task 2 also focused on
preliminary process design for a silane (SiH ) plant. A revised flowsheet
received from Union Carbide has received a preliminary review, and process
design has been reinitiated.

In Task 3, preliminary cost analysis is in progress for the conventional
polysilicon process used in the United States and Europe for the production
of semiconductor grade polysilicon. Plant investment and product cost
estimates will be determined upon completion of review of major process equipment
and production labor requirements.
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I. PROCESS SYSTEM PROPERTIES ANALYSES (TASK 1)

Major activities for process system properties of silicon source
materials were devoted to property data required in the performance of
the chemical engineering analyses of the alternate process under consider-
ation for solar cell grade silicon production.

For silane, liquid viscosity data are available (A30) in the temperature
range between the melting point and boiling point. The data were extended
to cover the entire liquid range with the following correlation (A63) for
viscosity of the saturated liquid as a function of temperature:

2
log y_ = A + B/T + CT + DT (1-1)

L

In Eq. (1-1), y = viscosity of saturated liquid, centipoise; A,B,C,D = corre-
lation constants characteristic for the chemical compound and T = temperature,
°K.

Correlation values and data were in good agreement with average absolute
deviation of 1.4%. Results for liquid viscosity versus temperature are given
in Figure 1-1.

Unfortunately, there are no experimental data available for gas thermal
conductivity of silane. In the absence of data, gas thermal conductivity
for silane was estimated by the modified Eucken correlation for polyatomic
gases:

where k = gas thermal conductivity at low pressure, cal/(sec) (sin) ( K) ;
y = gas viscosity, poise; C = gas heat capacity, cal/(g) ( k); and
M = molecular weight, g/g-mol.

The Eucken correlation results agrees well with values of Svehla (A40);
deviations are less than 1%. Figure 1-2 presents results for gas thermal
conduct ivi ty.

Liquid thermal conductivity results for silane are given in Figure 1-3.
The liquid thermal conductivity for silane was estimated with the modified
Stiel and Thodos (A29) relation:

e

f(P ) I

k = 1 + k (1-3)
L G
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where k = liquid thermal conductivity, cal/(sec)(cm)( K); k = gas thermal

conductivity at low pressure (1 atm), cal/(sec)(cm)( K); f = T M /P ;
c c

pr = reduced density, p/pc; and Z = critical compresibility factor.

The correlation was tested with experimental data for methane with
average deviations of less than 17%. The deviations for silane are probably
in the same range. The presented results are intended to represent correct
order-of-magnitude values.

Data for heat of formation of silane are available from American and
Russian sources (A12, A39). These data were correlated for heat of forma-
tion of the ideal gas by a series expansion in temperature:

AH = A + BT + CT2 (1-4)

where AH = heat of formation of ideal gas at low pressure, kcal/g-mol;

A,B,C = correlation constants characteristic for the chemical compount;
and T = temperature, °K.

A least squares regression analysis of the available data was used to
determine the constants A,B, and C. A generalized least-squares regression
computer program for minimizing deviation was used to process the numerous
data points.

Correlation and data values are compared in Figure 1-4 for silane.
The agreement is quite good. In most cases, the average absolute deviations
of correlation and data are less than 0.30 kcal/g-mol.

Data for free energy of formation are also available from American
and Russian investigations (A12, A39) for silane.

Correlation constants for free energy of formation of the ideal
gas were based on a linear relationship in temperature.

AG = A + BT (1-5)

where AG = free energy of formation of ideal gas at low pressure, kcal/g-mol;
A, B = correlation constants characteristic of the chemical compound; and
T = temperature, °K. .

The correlation constants, A and B, were ascertained from a least-
squares regression analysis of the available data. The regression analysis
was done with a generalized least-squares computer program for minimizing
deviation.

Correlation and data values for free energy of formation compare
favorably, as illustrated in Figure 1-5 for silane. Average absolute devia-
tions between correlation and data values are less than 0.30 kcal/g-mol
in most cases.
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II. CHEMICAL ENGINEERING ANALYSES (TASK 2)

A. Silane Process (Union Carbide)

Major effors during this reporting period, were devoted to the
preliminary process design for the silane process (Union Carbide). The
status, including progress since the last reporting period for the process
design is given below for key guideline items:

Current
Process Flow Diagram 75%
Material Balance 50%
Energy Balance 0%
Property Data 40%
Equipment Design 10%

The status, including activities accomplished, in progress, and planned
are shown in Table IIA-1 for the preliminary process design.

A revised flowsheet has been received by Mr. W. C. Breneman of Union
Carbide. A preliminary review of the revised flowsheet is in progress.
The revised flowsheet is shown in Figure IIA-1.



ATABiE IIA^l CHEMICAL ENGINEERING ANALYSES:
PRELIMINARY PROCESS DESIGN ACTIVITIES FOR SILANE PROCESS (UNION CARBIDE)

Prel. Process Design Activity

Specify Base Case Conditions
1. Plant Size
2. Product Specifics
3. Additional Conditions

Define Reaction Chemistry
1. Reactants, Products
2. Equilibrium

Process Flow Diagram
1. Flow Sequence, Unit Operations
2. Process Conditions (T, P, etc.)
3. Environmental
4. Company Interaction

(Technology Exchange)

Material Balance Calculations
1. Raw Materials
2. Products
3. By-Products

Energy Balance Calculations
1. Heating
2. Cooling
3. Additional

Status

9
t
0
e
e

0
0
0
0

Prel. Process Design Activity Status

7. Equipment Design Calculations 0
1. Storage Vessels 0
2. Unit Operations Equipment 0
3. Process Data (P, T, rate, etc.) 0
4. Additional 0

8. List of Major Process Equipment 0
1. Size 0
2. Type 0
3. Materials of Construction 0

8a. Major Technical Factors 0
(Potential Problem Areas) 0
1. Materials Compatibility 0
2. Process Conditions Limitations 0
3. Additional 0

9. Production Labor Requirements 0
1. Process Technology 0
2. Production Volume 0

10. Forward for Economic Analysis 0

Property Data
1. Physical
2. Thermodynamic
3. Additional

0
0
0
e

0 Plan
9 In Progress
t Complete
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3. Conventional Polysilicon Process

All resources and a majority of manpower were committed to
the preliminary process design for the conventional polysilicon process.

In an effort to report initial results,, routine review procedures
have beer circumvented. Therefore, these findings are subject to further
review and modification. The status for the preliminary process design,
including status since the last reporting period, is summarized below
for major items:

Prior Current
Process Flow Diagram 90% 100%
Material Balance 90% 100%
Energy Balance 80% 100%
Property Data 20% 80%
Equipment Design 30% 80%
Production Labor 0% 80%

The detailed status for all components that make up the preliminary
process design is given in Table IIB-1.0. The preliminary process flow-
sheet is shown in Figure IIB-1.0.

The results are summarized in Table IIB-1.1 to IIB-1.6. The guide for
these tables is given below:

Base Case Conditions Table IIB-1.1
Reaction Chemistry Table IIB-1.2
Raw Materials Requirements Table IIB-1.3
Utility Requirements Table IIB-1.4
List of Major Process Equipment... Table IlB-1.5
Production Labor Requirements Table IIB-1.6

The base case conditions (Table IIB-1.1) were selected so that the
designs and economic analyses prepared for alternate processes to produce
solar cell grade silicon might be compared to the conventional polysilicon
process. The preliminary design was prepared for an integrated plant with
trichlorosilane (TCS) production, TCS purification, and semiconductor grade
silicon production. In all cases, proven commercial technology was utilized;
(1) fluidized bed utilizing metalurgical grade (M.G.) silicon and anhydrous
HC1 to produce TCS, (2) distillation for the purification of TCS (and by-
product silicon tetrachloride, if desired), and (3) semiconductor grade poly-
silicon via the Sieman's type rod (hairpin) reactor. The open literature
(refs. 31, 32, and 20) were utilized to obtain exit gas compositions from
both reaction systems, and the TCS conversion to silicon (growth rate) was
obtained from reference 20. Technical interchange was maintained with
Dr. Leon Grossman of Dow Corning Corporation. Storage considerations and
operating ratio were selected commensurate with similar parameters for the
alternate processes being reviewed.

11



TABLE IIB-1.0 CHEMICAL ENGINEERING ANALYSES:
PRELIMINARY PROCESS DESIGN ACTIVITIES FOR

Prel. Process Design Activity

Specify Base Case Conditions
1. Plant Size
2. Product Specifics
3. Additional Conditions

Define Reaction Chemistry
1. Reactants, Products
2. Equilibrium

Process Flow Diagram
1. Flow Sequence, Unit Operations
2. Process Conditions (T, P, etc.)
3. Environmental
4. Company Interaction

(Technology Exchange)

Material Balance Calculations
1. Raw Materials
2. Products
3. By-Products

Energy Balance Calculations
1. Heating
2. Cooling
3. Additional

Property Data
1. Physical
2. Thermodynamic
3. Additional

Status

8a.

9.

Prel. Process Design Activity Status

Equipment Design Calculations 8
1. Storage Vessels 8
2. Unit Operations Equipment *
3. Process Data (P, T, rate, etc.) 8
4. Additional 8

List of Major Process Equipment 8
1. Size 8
2. Type i.
3. Materials of Construction 8

Major Technical Factors 8
(Potential Problem Areas) 8
1. Materials Compatibility 8
2. Process Conditions Limitations 8
3. Additional 8

Production Labor Requirements 8
1. Process Technology 8
2. Production Volume 8

10. Forward for Economic Analysis

0 Plan
8 In Progress
• Complete
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.TABLE IIB-1.1 . .......
BASE CASE CONDITIONS FOR CONVENTIONAL POLYSILICON PROCESS

1. Plant Size
-*- 1000 metric tons per year
- Semiconductor grade silicon

2. Production of TCS
- Fluidized Bed, 600°K, low pressure (65 PSIA)
- Metallurgical grade silicon plus HC1 gas
- Chlorosilane content in condensed reator gas by moles (ref. 32)

91.5% TCS (SiCl3H)
5.2% TET (SiCl )
1.4% DCS (SiCl2H )
1.9% Heavies

- Slight excess HC1 in reator gas (1%)
- Hydrogen burned

3. TCS Purification (ref. 31)
- Distillation
- 5% lights to waste (5% of TCS & TET)
- Separate TCS and TET
- 5% heavies from TCS & TET to waste
- TET for by-product sales
- TCS to rod reactor

4. Silicon Production
- Rod reactor at 1050°C, 20 PSIA
- Hydrogen to reduce TCS
- Entering gas analysis

10% TCS
90% H2

- 8.17 moles TCS in/mole of S; production in an operating reactor
- Exit gas analysis (ref. 20)

4.339% TET
4.457% TCS
.089% DCS

2.197% HC1
88.92% H

5. Waste Treatment
- Light and heavy cuts from distillation to waste treatment
- Vapors from TCS reactor condenser to scrubber
- Vapor from rod reactor to scrubber
- All waste streams neutralized with NaOH

14



TABLE IIB-1.1 (Continued)
6. Recycles

- H from rod reactor dried and returned, 5% losses
- Cnlorosilanes from rod reactor condensed off gas recycled to
purification (distillation)

7. Operating Ratio
- Approximately 90% utilization
- Approximately 7880 hour/year production

8. Storage Considerations
- Feed materials (two week supply)
- Product (two week supply)
- Process (several days)

15



TABLE IIB-1.2

REACTION CHEMISTRY FOR CONVENTIONAL POLYSILICON PROCESS

1. TCS Reactor

Si + 3 HC1 -> SiHCl + H

Si + 4 HC1 -*- SiCl, + 2H04 2
Si + 2HC1 ->• SiH Cl

2. Rod Reactor

SiHCl + H -»• Si + 3HC1
•J £

SiHCl + HCl-^-SiCl + H

SiHCl3 + H2 -> SiH2Cl2 + HC1

3. Waste Treatment

SiHCl + 2H O -»• SiO + 3HC1 + H
3 £ £ £,

4HC1

+ 2HC1 + 2H2

HC1 + NaOH •* NaCl + H O

16



TABLE IIB-1.3

RAW MATERIAL REQUIREMENTS FOR
CONVENTIONAL POLYSILICON PROCESS

Requirement
Raw Material Ib/Kg of Silicon

1. M. G..Silicon 6.72 Kg/Kg

2. Anhydrous HC1 57.96

3. Hydrogen .828

4. Caustic (50% NaOH) 53.29

5. SiCl4 (By Product) 46.12

17



TABLE IIB-1.4

UTILITY REQUIREMENTS FOR
CONVENTIONAL POLYSILICON PROCESS

UTILITY/FUNCTION

1. Electricity
1. All pump motors (16 motors)
2. 2 compressor motors
3. Polysilicon Rod Reactor

2. Steam (250 PSIA)
1. HC1 Vaporizer
2. Caustic Storage Tank
3. #1 Scrubber Vapor Heater
4. #1 Distillation Column Calandria
5. #2 Distillation Column Calandria
6. #3 Distillation Column Calandria
7. TCS Vaporizer
8. #2 Scrubber Vapor Heater
9. Liquid Recycle Heater

,10. #4 Distillation Column Calandria
11. Rod Reactor

REQUIREMENTS/Kg. OF SILICON PRODUCT

Cooling Water
1. TCS Reactor Off
2. Rod Reactor Off
3. #4 Distillation
4. Polysilicon Rod

End Plates
5. TCS Reactor Off
6. Rod Reactor Off

Gas Cooler
Gas Cooler
Column Condenser
Reactor Cooling

Gas Compressor
Gas Compressor

Process Water
1. #2 Gas Scrubber
2. #1 Gas Scrubber
3. To Make Steam In Cooling Rod

Reactor Side Walls

Refrigerant (-40 F)
1. TCS Reactor Off Gas Condenser
2. Rod Reactor Off Gas Condenser

Refrigerant (34°F)
1. #1 Distillation Column Condenser
2. #2 Distillation Column Condenser
3. #3 Distillation Column Condenser

High Temperature Heat Exchange Fluid
1. TCS Fluidized Bed Reactor
2. Nitrogen Heater

Nitrogen
1. Molecular Sieves
2. Polysilicon Rod Reactor Purge

(.339)
(9.243)
(375)
(ref. 33)

(7.07)
(1.82)
(.276)
(38.75)
(47.73)
(25.24)
(10.79)
(3.4)
(5.52)
(11.3)
(-1287
generated)

(13.91)
(334)
(37.24)

(473)
(11.12)
(115.2)

(31.36)
(134.82)

(154.7)

(12.57)
(29.52)

(34)
(37.4)
(20.85)

(581)
(0.61)

(328.5)
(20.64)

384.6 Kw-Hr

152 Pounds

98.5 Gallons

320.9 Gallons

42.1 M BTU

92.3 M BTU

582 Pounds

349.1 SCF

18



TABLE IIB-1.5

LIST OF MAJOR PROCESS
EQUIPMENT FOR CONVENTIONAL POLYSILICON PROCESS

2.

3.

4.

5.

Function Duty Size
Materials

of Construction

(Tl)

(T2)

(T3)

(T4)

(T5)

(T6)

(T7)

(T8)

(T9)

— —

M.G. Silicon
Storage Hopper

Liquid HC1
Storage Tank

Crude TCS
Hold Tanks (3)

Waste Hold
Tank

TCS Reactor Off
Gas Flash Tank

Hydrogen Storage
Tank

Polysilicon Storage
Space

TET Storage
Tanks (2)

TET Feed Tanks (2)

Raw Material Storage

Raw Material Storage

Feed for Purification

Feed For Waste
Treatment

Phase Separation

Make-up For Losses

Final Product Storage

Final By-product
Storage

Feed for Distillation

2 Weeks Storage

2 Weeks Storage

1 Week Storage

1 Week Storage

8 Hours Backup for
Pipeline Failure

2 Weeks Storage

2 Weeks Storage

1 Week Storage

4
6.5 x 10 gallons

2.5 x 105 gallons
250 PSIA

2.77 x 10 gallons
(each)

3.025 x 104 gallons

1 ft. in diameter by
4 ft. tall, 300 PSIA

4
7.24 x 10 gallons
Spherical 250 PSIA

1300 ft.3 of space

1.62 x 10 Gallons
(each)

4
8.83 x 10 Gallons

CS

Nickel Stee;

CS

CS

ss

CS

. CS

CS

. cs

7.

8.

9.

10. (T10) TCS Feed Tanks (3)

11. (Til) TCS Storage
Tanks (3)

12. (T12) TET/TCS Feed
Tanks (3)'

Column #4

Feed for Distillation
Column #3

Purified TCS Hold-Up
Feed to Rod Reactor

Feed for Distillation
Column #2

1 Day Storage

1 Week Storage

1 Day Storage

(each)

2.47 x 104 Gallons
(each)

1.64 x 105 Gallons
(each)

3.75 x 104 Gallons
(each)"

CS



TABLE IIB-1.5 (continued)

13. (T13) Caustic Storage
Tank

14. (T14) #1 Distillation
Condenser Flash
Tank

15. (T15) RoH Reactor Off
Gas Flash Tank

16. (HI) HC1 Vaporizer

10
o

17. (H2)

18. (H3)

19. (H4)

20. (H5)

21. (H6)

22. (H7)

23. (H8)

24. (H9)-

TCS Reactor Off
Gas Cooler

TCS Reactor Off
Gas Condenser

#1 Scrubber
Vapor Heater

#1 Distillation
Column Condenser

#1 Distillation
Column Calandria

#2 Distillation
Column Condenser

#2 Distillation
Column Calandria

"#3 -Drstillation
Column Condenser

Raw Material Storage

Phase Separation

Phase Separation

Vaporize Feed To
TCS Reactor

Cool Reaction
Gas

Condense Reaction
Gas

Heat Vapor Wastes
to 40°F for Scrubbing

Condense Overheads for
Re lux

2 Week Storage
1.91 x 105 BTU/HR

7.5 x 10 BTU/Hr

4.4 x 10 BTU/Hr

1.6 x 10 BTU/Hr

3 x 10 BTU/Hr

4.31 x 10 BTU/Hr

Reboiler for Column #1 4 x 10 BTU/Hr

Condense Overheads
For Reflux

4.7 x 10 BTU/Hr

Reboiler for Column #2 5 x 10 BTU/Hr

6
-Condense Overheads for "̂ 2."64 x"10 BTU/Hr
Reflux

1.82 x 10 Gallons

1 Ft. in Diameter
by 4 Feet Tall

1 Ft. in Diameter
by 4 Feet Tall
300 PSIA

224 Ft. 65 PSIA Tubes

1540 Ft/

1555 Ft.'

SS

CS

SS

38.29 Ft. 250 PSIA Shell SS/SS

CS/SS

1423 Ft. 300 PSIA Tubes SS/SS

15.7 Ft. 250 PSIA Shell CS/SS

CS/SS

311. Ft. 250 PSIA Shell '. CS/SS

CS/CS

402.4 Ft. 250 PSIA Shell CS/SS

•—' -361 Ft'. "- — cs/cs



TABLE IIB-1.5 (continued)

25. (H10) #3 Distillation
Column Calandria

26. (Hll) TCS Vaporizer

27. (H12) Rod Reactor Off
Gas Cooler

28. (H13) Rod Reactor Off
Gas Condenser

29. (H14) #2 Scrubber
Vapor Heater

30. (HIS) Liquid Recycle
Heater

IVJ

31. (H16) #4 Distillation
Column Condenser

32. (H17) #4 Distillation
Column Calandria

33. (HIS) Nitrogen Heater

34. (PI)

35. (P2)

TCS Reactor Off
Gas Compressor

Caustic Supply
Pump

Reboiler for
Column #3

Vaporize Feed To
Rod Reactor

Cool Reaction
Gas

Condense Reaction
Gas

Heat Vapor Wastes
to 40 F for Scrubbing

Heat Cold Recycle
Liquid (Crude TCS) to
80 F for Storage

Condenser Overheads for
Reflux

2.64 x 10 BTU/Hr

1.13 x 10 BTU/Hr

1.06 x 10 BTU/Hr

3.74 x 10 BTU/Hr

3.56 x 10 BTU/Hr

5.79 x 10 BTU/Hr

1.18 x 10 BTU/Hr

36. (P3) #1 Distillation
Column Overheads
Pump

Reboiler for Column #4 1.18 x 10 BTU/Hr

Heat Regenerator 2.46 x 10 BTU/Hr
Gas for Molecular Sieves

Compress Reaction Gas 3.52 x 10 BTU/Hr
For Condensation

Supply Caustic for Waste
Neutralization and Gas
Scrubbers

Supply Reflux and Remove
Waste to Waste Hold Tank

173 Ft. 250 PSIA Shell CS/SS

73 Ft. 250 PSIA Shell CS/CS

2519 Ft. 20 PSIA CS/SS

3341 Ft. 300 PSIA Tubes SS/SS

180 Ft. 250 PSIA Shell CS/SS

30.6 Ft. 250 PSIA Shell SS/SS

513 Ft. ' CS/CS

95 Ft. 250 PSIA Shell CS/SS

44.8 Ft. CS/CS

138.2 Horsepower CS

9 gpm 100 Ft. of Head SS

62.2 gpm 100 Ft. of Head CS*



TABLE IIB-1.5 (continued)

37. (P4) #1 Distillation
Column Calandria
Pump

38. (P5) TET/TCS Feed Pump

39. (P6) #2 Distillation
Column Overheads
Pump

to
to

40. (P7) TCS Feed Pump

41. (P8) #2 Distillation
Column Calandria
Pump

42. (P9) #3 Distillation
Column Overhead
Pump

43. (P10) Rod Reactor TCS
Feed Pump

44. (Pll) #3 Distillation
Column Calandria
Pump

45. (P12) Rod Reactor Off
Gas Compressor

46. (P13) #4 Distillation
Column Overheads
Pump

, ..47. (P14) #4 Distillation,
Column Calandria
Pump

Forced Convection
Pump

Feed #2 Distillation
Column

Supply Relux , Pump
Overhead to TCS Feed
Tank

Feed #3 Distillation
Column

Forced Convection Pump

Supply RefluXfPump
Overheads to TCS
Storage Tank

Feed TCS to Rod
Reactor

Forced Convection
Pump

Compress Reaction
Gas for Condensation

Supply Reflux
Pump TET by product to
TET Storage Tank

Forced -Convection.
Pump

3.65 x 10 BTU/Hr

93 gpm 150 Ft. of Head CS*

26.1 gpm 100 Ft. of Head CS*

70 gpm 100 Ft. of Head CS*

21 gpm 100 Ft. of Head CS*

104 gpm 150 Ft. of Head CS*

39 gpm 100 Ft. of Head CS*

15 gpm 100 Ft. of Head CS*

39 gpm 150 Ft. of Head CS*

1434 Horsepower CS

21.59 gpm 100 Ft. of Head CS*

,_,_~22.4 gpm-'100 Ft. of Head CS*

NOTES
*Includes incremental higher cost for special purity requirements.



TABLE IIB-1.5 (continued)

48. (P15) TET Feed Pump

49. (P16) Waste Treatment
Pump

50. (P17) Crude TCS Feed
Pump

51. (P18) Process Water
Feed Pump

52. (Cl) #1 Gas Scrubber

53. (C2) #2 Gas Scrubber

54. (C3) #1 Distillation
Column

55. (C4) #2 Distillation
Column

56. (C5) #3 Distillation
Column

57. (C6) #4 Distillation
Column

58. (Rl) TCS Fluidized Bed
Reactor

Feed #4 Distillation
Column

Pump from Waste Hold
To Waste Treatment

Feed Purification
Area

Feed Process Water to
Scrubber and Waste
Treatment

Scrub Gas Wastes from
TCS Reactor Off Gas

Scrub Gas Wastes from
H16, H3, H5

Separate Light
Impurities to Waste

Separate TET and TCS

Separate Heavies
TCS to Waste

Separate Heavies
TET to Waste

Production of TCS
For Rod Reactor

4.552 x 10 BTU/Hr
(Cooling)

9.2 gpm 100 Ft. of Head CS*

2.8 gpm 50 Ft. of Head CS

28 gpm 100 Ft. of Head CS*

350 gpm 100 Ft. of Head CS

43 Ft. Tall : ss

D = 3h Ft.

40 Ft. Tall ' SS
V = 2h Ft.

29 Trays CS
24 inches apart :

3 3/4 Ft. in Diameter

29 Trays CS
24 inches apart
4s* Ft. in Diameter

15 Trays • CS
20 inches apart
3 Ft. in diameter

15 Trays CS
20 inches apart
2h Feet in Diameter

D = 2.61 Ft. , SS
L = 28.8 Ft.
64, 1" 0 D Cooling Tubes
9.4' Long



TABLE IIB-1.5 (continued)

59. (R2)

60. (Al)

Polysilicon Rod
Reactors (285)

Molecular Sieves
(2)

61. (A2) Fines Separator

62. (A3) Hydrogen Flare

Production of
Polysilicon

Dry Out Rod Reactor
Off Gas For Hydrogen
Recycle

Remove Solids From
Fluidized Bed Reactor
Off Gas

Dispose of Hydrogen 8.94 x 10 BTU/Hr
Produced in TCS Fluidized
Bed Reactor

Hairpin Reactor (2 hair- Quartz
pins, 3 Ft. long, 6 Inch Dia.)

D = 3.5 Ft.
L = 14.4 Ft.

12" Cyclone Separator

30 Feet High Stack
6" diameter

CS

SS

CS



Unit Operation

TABLE IIB-1.6

PRODUCTION LABOR REQUIREMENTS FOR

CONVENTIONAL POLYSILICON PROCESS

Skilled Labor
Man Hrs/Day Per Kg Si

1.

2.

3.

4.

5.

6.-

7.

8.

9.

10.

11.

12.

13.

14.

TCS Production

Vaporization

Vapor Compression

Vapor Condensation

TCS/TET Separation

TCS Purification

TET Purification

Waste Treatment

Gas Scrubbing

Hydrogen Drying
(Molecular Sieves)

Crude TCS Recycle
System

Silicon Fines Sep-
aration

Material Handling

Polysilicon Production

TOTAL

A

B

B

B

C

C

C

B

B

B

B

B

A

720

1303

.2628

.4758

Semiskilled Labor
Per Day per Kcr Si

A

B

B

B

C

C

C

B

B

B

B

B

80

60

60

60

40

35

30

80

33

32

58

15

.0292

.0219

.0219

.0219

.0146

.0128

.011

.0292

.012

.0117

.0212 L

.0055

90

90

.0329

.0329

NOTES:

1. A Batch Process or Multiple Small Units
B Average Process
C Automated Process

2. Man hours/day Unit from Figure 4-6, Peters and Timmerhaus (7).

3. Polysilicon manpower requirements based on batch operation with approximately 1
operator per 10 reactors.

25



The reaction chemistry (Table IIB-1.2) specifies the majority of
components that occur in the reacting unit operations. These were used
to obtain the material balance around these stages. This material balance
is utilized to calculate the raw material requirements given in Table IIB-1.3.
The amount of silicon tetrachloride (TET) by-product calculated is the amount
left after complete purification. The major raw material requirements are
M.G. silicon and HC1,which are used to generate the intermediate TCS,
and hydrogen for the rod reactors. The hydrogen useage is low because most
of it is recovered and recycled.

The utility requirements ((Table IIB-1.4) are obtained from an energy
balance around each piece of major process equipment. Both reaction systems
require cooling and the numerous heat exchangers require either steam, cooling
water, or refrigerant. The major utility requirement is the electrical
requirement for the rod reactors.

The list of major process equipment (62 pieces) is shown in Table IIB-1.5.
Columns one and two list the equipment and function as obtained from the
detailed process flowsheet. The duty, in column 3, is obtained from Table IIB-1.1
(Base Case Conditions) and the energy balance required to prepare Table
(Utility Requirements). Column four (size) was determined by standard chem-
ical engineering design equations for each piece of equipment to match the
duty in Column 3. The materials of construction (Column 5) were decided upon
after conversations with Dr. Grossman.

The production labor requirements (Table IIB-1.6) were estimated for
operations 1 through 13 by the technique described in Peters and Timmerhaus
(ref. 7) and utilized for alternate processes already completed. The
polysilicon production labor requirements were estimated at one operator
per 10 reactors.

These initial results for the conventional polysilicon process are being
reviewed primarily in the areas of major process equipment design and pro-
duction labor requirements. Upon completion of the review, the finalized
results will be forwarded for economic analyses to provide estimates of plant
investment and production costs for the polysilicon produced by conventional
process technology.
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III. ECONOMIC ANALYSES (TASK 3)

Economic analyses activities were continued during this reporting
period to aid in the cost evaluation of alternate processes under
consideration for solar cell grade silicon.

Primary efforts were devoted to the preliminary economic analysis of
the conventional polysilicon process. The status, including activities \
accomplished, in progress, and planned is shown in Table lll-l. j

The initial results for the preliminary economic analysis are
summarized in a tabular format. The guide for the tabular format is
given below for the accompanying tables:

1. Process Design Inputs Table III-l.l
2. Base Case Conditions Table III-l. 2
3. Raw Material Cost Table III-l.3
4. Utility Cost Table III-l.4
5. Major Process Equipment Cost Table III-l.5
6. Production Labor Cost Table III-l.6

The process design inputs are given in Table III-l.l including raw
materials, utilities, equipment and labor requirements. The base case
conditions for the preliminary cost analysis are presented in Table III-l.2
including the reference 1975 time period.

The preliminary estimate of cost for raw materials, utilities, major
process equipment and labor required for the production of silicon in the
conventional polysilicon process are detailed in Table III-l.3 to III-l.6.

In Table III-l.4 for utilities, a value of 3<J/kw-hr for the reference
time period was used for electrical cost for industrial power. This
value may be slightly high based on a recent plant site survey (ref. 35).
The survey indicated an average cost for 1975 of industrial power to
be 2.27<?Aw-hr for Arizona, 2.48CAw-hr for Michigan and 1.49<?/kw-hr
for Texas. A lower electrical power cost (such as 1.5C/kw-hr versus 3<f/kw-hr)
will result in a lower product cost for the polysilicon. This is especially
true since the conventional polysilicon process has such high electrical
requirements (350-400 kw-hr/KG of silicon) for the production of poly-
silicon.

Review of these initial results is progress in the areas of major
process equipment and production labor requirements and associated costs.
Upon completion of the review, major activities in economic analyses will
focus on estimates of plant investment and product costs for the production
of semiconductor grade polysilicon via the conventional hairpin process
technology.

27



TABLE III-l

ECONOMIC ANALYSES: PRELIMINARY .ECONOMIC ANALYSIS ACTIVITIES
FOR CONVENTIONAL POLYSILICON PROCESS

to
oo

Prel. Process Economic Activity

Process Design Inputs
1. Raw Material Requirements
2. Utility Requirements
3. Equipment List
4. Labor Requirements

Specify Base Case Conditions
1. Base Year for Costs
2. Appropriate Indices for Costs
3. Additional

Raw Material Costs
1. Base Cost/Lb. of Material
2. Material Cost/Kg of Silicon
3. Total Cost/Kg of Silicon

Utility Costs
1. Base Cost for Each utility
2. Utility Cost/Kg of Silicon
3. Total Cost/Kg of Silicon

Major Process Equipment Costs
1. Individual Equipment Cost
2. Cost Index Adjustment

Status

0
9

e
6

e
c
0
9

o
e
e

Prel. Process Economic Activity

6. Production Labor Costs
1. Base Cost Per Man Hour
2. Cost/Kg Silicon Per Area
3. Total Cost/Kg Silicon

7. Estimation of Plant Investment
1. Battery Limits Direct Costs
2. Other Direct Costs
3. Indirect Costs
4. Contingency
5. Total Plant Investment

(Fixed Capital)

8. Estimation of Total Product Cost
1. Direct Manufacturing Cost
2. Indirect Manufacturing Cost
3. Plant Overhead
4. By-Product Credit
5. General Expenses
6. Total Cost of Product

Status

9
0
e
e

o
o
o
0
0
0

0
0
0
0
0
0
0

0 Plan
0 In Progress
• Complete



:.. TABLE III-l.l

'.'-': PROCESS DESIGN INPUTS FOR
• CONVENTIONAL POLYSILICON PROCESS

1. Raw Material Requirements

-M.G. silicon, anhydrous HC1, caustic, hydrogen, silicon tetrachloride (by-product)
-see table for "Raw Material Cost"

2. utility
-electrical, steam, cooling water, etc.
-see table for "Utility Cost"

3. Equipment List

-62 pieces of major process equipment
-process vessels, heat exchangers, reactor, etc.
-see table for "Major Process Equipment Cost"

4. Labor Requirements
-production labor for deposition, vaporization, product handling, etc.
-see table for "Production Labor Cost"
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TABLE III-1.2

BASE CASE CONDITIONS FOR
CONVENTIONAL POLYSILICON PROCESS

1. Capital Equipment
-January 1975 Cost Index for Capital Equipment Cost
-January 1975 Cost Index Value = 430

2. Utilities
-Electrical, Steam, Cooling Water, Nitrogen
-January 1975 Cost Index (U.S. Dept. Labor)
-Values determined by literature search and summarized in cost
standardization work

3. Raw Material Cost
-Chemical Marketing Reporter
-January 1975 Value
-Other Sources

4. Labor Cost
-Average for Chemical Petroleum, Coal and Allied Industries (1975)
-Skilled $6.90/hr
-Semiskilled $4.90/hr
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Raw Material

TABLE III-1.3

RAW MATERIAL COST FOR
CONVENTIONAL POLYSILICON PROCESS

Requirement
Ib/Kg of Silicon

1. M.G. Silicon

2. Anhydrous HC1

3. Hydrogen

4. Caustic (50% NaOH)

5. SiCl (By Product)

6.72 (Kg/Kg)

57.96

.828

53.29

46.12

$/lb of
Material

1.0/Kg (Ref.33)

.10 (Ref. 34)

.96 (Ref. 33)

.0382 (Ref. 12)

.135 (Ref. 12)

TOTAL COST

Cost $/Kg
Of Silicon

6.72

5.79

.79

2.04

-6.23 (credit)

$ 9.11/Kg Silicon
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TABLE III-1.4

UTILITY COST FOR CONVENTIONAL
POLYSILICON PROCESS

Utility

1. Electricity

2. Steam

3. Cooling Water

4. Process Water

5. Refrigerant (-40°F)

6. Refrigerant (34°F)

7. High Temperature
Coolant

8. Nitrogen

Requirements/Kg of Silicon

384.6 kw-hr

152 Pounds

984.5 Gallons

320.9 Gallons

42.1 M BTU

92.3 M BTU

582 Pounds

349 SCF

Cost of Utility

$ . 03 Aw-hr

_ *

$ .08/M Gal.

$ ,35/M Gal.

$10.38/MM BTU

$ 3.75/MM BTU

$ 2.7/M Pounds

Cost $/Kg
of Silicon

§ 11.54

.08

.11

.44

.35

1.57

$ .50/M SCF .17

TOTAL COST $14.26/Kg Silicon

f

NOTES
r

* All steam produced by cooling jacket on polysilicon rod reactor.
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TABLE III-1.5

PURCHASED COST OF MAJOR PROCESS EQUIPMENT FOR
CONVENTIONAL POLYSILICON PROCESS

Equipment: Purchased Cost, $M

1. (Tl) M.G. Silicon Storage Hopper 24.1

2. (T2) Liquid HC1 Storage Tank 435.96

3. (T3) Crude TCS Hold Tank (3) 178.8

4. (T4) Waste Hold Tank 14.9

5. (T5) TCS Reactor Off Gas Flash Tank 7.2

6. (T6) Hydrogen Storage Tank 152.1

7. (T7) Polysilicon Storage Space 10.8

8. (T8) Tet Storage Tanks (2) 85.2

9. (T9) Tet Feed Tanks (2) 57.8

10. (T10) TCS Feed Tanks (3) 42.6

11. (Til) TCS Storage Tanks (3) 127.8

12. (T12) TET/TCS Feed Tanks (3) 54.

13. (T13) Caustic Storage Tank 106.7

14. (T14) #1 Distillation Condenser Flash Tank .85

15. (T15) Rod Reactor Off Gas Flash Tank 7.2

16. (HI) HC1 Vaporizer 2.5

17. (H2) TCS Reactor Off Gas Cooler 7

18. (H3) TCS Reactor Off Gas Condenser 46.3

19. (H4) #1 Scrubber Vapor Heater .75

20. (H5) #1 Distillation Column Condenser 14.

21. (H6) #1 Distillation Column Calandria 9.25

22. (H7) #2 Distillation Column Condenser 14.6

23. (H8) #2 Distillation Column Calandria 11.92

24. (H9) #3 Distillation Column Condenser 9.1

25. (H10) #3 Distillation Column Calandria 5.8

26. (Hll) TCS Vaporizer 1.8

27. (H12) Rod Reactor Off Gas Cooler 49.4

28. (H13) Rod Reactor Off Gas Condenser 97.5

29. (H14) #2 Scrubber Vapor Heater 5.8

30. (H15) Liquid Recycle Heater 2.3

31. (H16) #4 Distillation Column Condenser 6.4

32. (H17) #4 Distillation Column Calandria 3.7

33. (HIS)' Nitrogen Heater 1.3
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TABLE III-1.5 (Continued)

34. CPU TCS Reactor Off Gas Compressor 53.2

35. (p2) Caustic Supply Pump 1.56

36. (P3) #1 Distillation Column Overheads Pump 2.64

37. (P4) #1 Distillation Column Calandria Pump 3.83

38. (P5) TET/TCS Feed Pump 2.04

39. (P6) #2 Distillation Column Overhead Pump 2.8

40. (P7) TCS Feed Pump 1.8

41. (P8) #2 Distillation Column Calandria Pump 3.8

42. (P9) #3 Distillation Column Overhead Pump 2.2

43. (P10) Rod Reactor TCS Feed Pump 1.7

44. (Pll) #3 Distillation Column Calandria Pump 2.6

45. (P12) Rod Reactor Off Gas Compressor 235.5

46. (P13) #4 Distillation Column Overheads Pump 1.87

47. (P14) #4 Distillation Column Calandria Pump 1.87

48. (P15) TET Feed Pump 1.56

49. (P16) Waste Treatment Pump .77

50. (P17) Crude TCS Feed Pump 1.9

51. (P18) Process Water Feed Pump 3.7

52. (Cl) #1 Gas Scrubber 53.2

53.' (C2) #2 Gas Scrubber 29.

54.' (C3) ttl Distillation Column 26.1

55. (C4) #2 Distillation Column 27.7

56. (C5) #3 Distillation Column 8.9

57. (C6) #4 Distillation Column 6.7

58. (Rl) TCS Fluidized Bed Reactor 57.2

59. (R2) Polysilicon Rod Reactors (285) 56. (each)

60. (Al) Molecular Sieves 16.77

61. (A2) Fines Separator 4.8

62. (A3) Hydrogen Flare 1.

TOTAL PURCHASED COST $18,112.14
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TABLE III-1.6

PRODUCTION LABOR COST FOR
CONVENTIONAL POLYSILICON PROCESS

Unit Operation

1. TCS Production

2. Vaporization

3. Vapor Compression

4. Vapor Condensation

5. TCS/TET Separation

6. TCS Purification

7. TET Purification

8. Waste Treatment

9. Gas Scrubbing

10. Hydrogen Drying
(Molecular Sieves)

11. Crude TCS Recycle System

12. Silicon Pines Separation

13. Materials Handling

14. Polysilicon Production

Skilled Labor
Man-Hrs/Kg Si

.0292

.0219

.0219

.0219

.0146

.0128

.011

.0292

.012

.0117

.0212

.0055

.2628

Semiskilled Labor
Man-Hrs/Kg Si

.0329

Cost
$/Kg Si

.2014

.1511

.1511

.1511

.1007

.0883

.0759

.2014

.0828

.0807

.1463

.038

.1612

1.8133

TOTAL COST $3.44/Kg Silicon

35
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IV. SUMMARY - CONCLUSIONS

Based on major activities accomplished in this reporting period,
the following summary-conclusions are made:

1. Task 1.

Major efforts were continued for process system properties of silicon
source materials under consideration for solar cell grade silicon.
Primary activities focused on property data for silane.

Liquid viscosity data for silane were correlated as a function of
temperature to cover the entire liquid range. Correlation values and
data were in good agreement with average absolute deviation of only 1.4%.

Estimates of gas and liquid thermal conductivity results are reported
for silane. Unfortunately, there are no experimental data for these trans-
port properties.

For additional silane properties, results are presented for heat and
free energy of formation of the gas as a function of temperature. The
correlation results are based on data from both American and Russian sources.
In general, the agreement of the correlation and data values is quite good.
Average deviations are less than 0.30 kcal/g-mol.

2. Task 2

Major efforts were devoted to preliminary process design for the
conventional polysilicon process. Engineering design calculations for the
preliminary process flowsheet, material balance and energy balance are
essentially 100% complete. Major process equipment design and production
labor requirements are 80% complete.

Initial results for the conventional polysilicon process indicate the
key items are M.G. silicon and HC1 consumption; electrical requirements
for the rod reactors; and the large number of major equipment items (62).
The criteria for design was selected to be commensurate with the design
basis for the alternate processes to produce solar cell grade silicon.

Additional chemical engineering activities are being devoted to preli-
minary process design for the silane (Union Carbide) process. For the
process flow diagram as initially received, technical interchange was
initiated with Union Carbide to refine the material balance. A revised
flowsheet has been received. A preliminary review is essentially complete
on several major material balance items. Process design will now proceed.

3. Task 3

Preliminary cost analysis is in progress for the conventional polysilicon
process used in the United States and Europe for the production of semi-
conductor grade polysilicon. Plant investment and product cost will be
determined upon completion of review of major process equipment and production
labor requirements.
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V. PLANS

Plans for the next reporting period are summarized below:

1. Task 1.

Continued analyses of process system properties for silicon source
materials under consideration for solar cell grade silicon.

Perform additional correlation activities on experimental data.

2. Task 2.

Design activity on the silane process will proceed utilizing the
revised flowsheet received.

Continue preliminary design of the conventional polysilicon process.
Complete review of initial results including major process equipment and
production labor requirements.

3. Task 3.

Perform preliminary cost analysis for conventional polysilicon
process including estimates for plant investment and product costs for
semiconductor grade polysilicon.

Perform additional economic analyses on alternate processes under
consideration for solar cell grade silicon.
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