10 research outputs found

    Assessing Reproducibility of Inherited Variants Detected With Short-Read Whole Genome Sequencing

    Get PDF
    Background: Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. Results: To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when \u3e 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. Conclusions: Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS

    Assessing reproducibility of inherited variants detected with short-read whole genome sequencing

    Get PDF
    Background: Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. Results: To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30x. Conclusions: Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.Peer reviewe

    Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    No full text
    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune-response, tailoring drug therapy and detecting tumors. We believe the precision medicine would largely benefit from bioinformatics solutions, particularly for personal genome assembly

    Boost Dose Back Again in Elderly

    No full text

    Clustering Mobile Trajectories for Resource Allocation in Mobile Environments

    No full text
    The recent developments in computer and communication technologies gave rise to Personal Communication Systems. Due to the nature of the PCS, the bandwidth allocation problem arises, which is based on the notion of bandwidth-on-demand. We deal with the problem of how to predict the position of a mobile client. We propose a new algorithm, called DCP, to discover user mobility patterns from collections of recorded mobile trajectories and use them for the prediction of movements and dynamic allocation of resources. The performance of the proposed algorithm is examined against two baseline algorithms. The simulation results illustrate that the proposed algorithm achieves recall that is comparable to that of the baseline algorithms and substantial improvement in precision. This improvement guarantees very good predictions for resource allocation with the advantage of very low resource consumption

    Databases and ontologies PathCase: pathways database system

    No full text
    Motivation: As the blueprints of cellular actions, biological pathways characterize the roles of genomic entities in various cellular mechanisms, and as such, their availability, manipulation and queriability over the web is important to facilitate ongoing biological research. Results: In this article, we present the new features of PathCase, a system to store, query, visualize and analyze metabolic pathways at different levels of genetic, molecular, biochemical and organismal detail. The new features include: (i) a web-based system with a new architecture, containing a server-side and a client-side, and promoting scalability, and flexible and easy adaptation of different pathway databases, (ii) an interactive client-side visualization tool for metabolic pathways, with powerful visualization capabilities, and with integrated gene and organism viewers, (iii) two distinct querying capabilities: an advanced querying interface for computer savvy users, and built-in queries for ease of use, that can be issued directly from pathway visualizations and (iv) a pathway functionality analysis tool. PathCase is now available for three different datasets, namely, KEGG pathways data, sample pathways from the literature and BioCyc pathways for humans
    corecore