119 research outputs found

    Mouse SPNS2 Functions as a Sphingosine-1-Phosphate Transporter in Vascular Endothelial Cells

    Get PDF
    Sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is produced inside the cells, regulates a variety of physiological and pathological responses via S1P receptors (S1P1–5). Signal transduction between cells consists of three steps; the synthesis of signaling molecules, their export to the extracellular space and their recognition by receptors. An S1P concentration gradient is essential for the migration of various cell types that express S1P receptors, such as lymphocytes, pre-osteoclasts, cancer cells and endothelial cells. To maintain this concentration gradient, plasma S1P concentration must be at a higher level. However, little is known about the molecular mechanism by which S1P is supplied to extracellular environments such as blood plasma. Here, we show that SPNS2 functions as an S1P transporter in vascular endothelial cells but not in erythrocytes and platelets. Moreover, the plasma S1P concentration of SPNS2-deficient mice was reduced to approximately 60% of wild-type, and SPNS2-deficient mice were lymphopenic. Our results demonstrate that SPNS2 is the first physiological S1P transporter in mammals and is a key determinant of lymphocyte egress from the thymus

    Differences between Human Plasma and Serum Metabolite Profiles

    Get PDF
    BACKGROUND: Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. CONCLUSIONS/SIGNIFICANCE: Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection

    Prevalence of asthma symptoms based on the European Community Respiratory Health Survey questionnaire and FENO in university students: gender differences in symptoms and FENO

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fractional concentration of nitric oxide in exhaled air (F<smcaps>E</smcaps>NO) is used as a biomarker of eosinophilic airway inflammation. F<smcaps>E</smcaps>NO is increased in patients with asthma. The relationship between subjective asthma symptoms and airway inflammation is an important issue. We expected that the subjective asthma symptoms in women might be different from those in men. Therefore, we investigated the gender differences of asthma symptoms and F<smcaps>E</smcaps>NO in a survey of asthma prevalence in university students.</p> <p>Methods</p> <p>The information about asthma symptoms was obtained from answers to the European Community Respiratory Health Survey (ECRHS) questionnaire, and F<smcaps>E</smcaps>NO was measured by an offline method in 640 students who were informed of this study and consented to participate.</p> <p>Results</p> <p>The prevalence of asthma symptoms on the basis of data obtained from 584 students (266 men and 318 women), ranging in age from 18 to 24 years, was analyzed. Wheeze, chest tightness, an attack of shortness of breath, or an attack of cough within the last year was observed in 13.2% of 584 students. When 38.0 ppb was used as the cut-off value of F<smcaps>E</smcaps>NO to make the diagnosis of asthma, the sensitivity was 86.8% and the specificity was 74.0%. F<smcaps>E</smcaps>NO was ≥ 38.0 ppb in 32.7% of students. F<smcaps>E</smcaps>NO was higher in men than in women. The prevalence of asthma symptoms estimated by considering F<smcaps>E</smcaps>NO was 7.2%; the prevalence was greater in men (9.4%) than women (5.3%). A F<smcaps>E</smcaps>NO ≥ 38.0 ppb was common in students who reported wheeze, but not in students, especially women, who reported cough attacks.</p> <p>Conclusions</p> <p>The prevalence of asthma symptoms in university students age 18 to 24 years in Japan was estimated to be 7.2% on the basis of F<smcaps>E</smcaps>NO levels as well as subjective symptoms. Gender differences were observed in both F<smcaps>E</smcaps>NO levels and asthma symptoms reflecting the presence of eosinophilic airway inflammation.</p> <p>Trial registration number</p> <p>UMIN000003244</p

    Incomplete Inhibition of Sphingosine 1-Phosphate Lyase Modulates Immune System Function yet Prevents Early Lethality and Non-Lymphoid Lesions

    Get PDF
    BACKGROUND: S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. METHODOLOGY: In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. PRINCIPAL FINDINGS: Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL(-/-)) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PL(H/-)) or two alleles (S1PL(H/H)) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL(-/-) mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. SIGNIFICANCE: These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs

    Impact of Systemic Inflammation and Autoimmune Diseases on apoA-I and HDL Plasma Levels and Functions

    Get PDF
    The cholesterol of high-density lipoproteins (HDLs) and its major proteic component, apoA-I, have been widely investigated as potential predictors of acute cardiovascular (CV) events. In particular, HDL cholesterol levels were shown to be inversely and independently associated with the risk of acute CV diseases in different patient populations, including autoimmune and chronic inflammatory disorders. Some relevant and direct anti-inflammatory activities of HDL have been also recently identified targeting both immune and vascular cell subsets. These studies recently highlighted the improvement of HDL function (instead of circulating levels) as a promising treatment strategy to reduce inflammation and associated CV risk in several diseases, such as systemic lupus erythematosus and rheumatoid arthritis. In these diseases, anti-inflammatory treatments targeting HDL function might improve both disease activity and CV risk. In this narrative review, we will focus on the pathophysiological relevance of HDL and apoA-I levels/functions in different acute and chronic inflammatory pathophysiological conditions
    • …
    corecore